cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A366112 Expansion of (1/x) * Series_Reversion( x*(1-x-x^5)/(1-x) ).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 7, 14, 22, 31, 41, 103, 235, 457, 791, 1261, 2399, 5015, 10257, 19676, 35296, 65170, 127520, 256187, 507601, 969495, 1834433, 3534477, 6962249, 13809538, 27061252, 52439361, 101701035, 199152071, 393332277, 776589611, 1525416837
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[x*(1-x-x^5)/(1-x),{x,0,41}]]/x,x] (* Stefano Spezia, Aug 21 2025 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n+k, k)*binomial(n-4*k-1, n-5*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n+k,k) * binomial(n-4*k-1,n-5*k).

A369489 Expansion of (1/x) * Series_Reversion( x / (1-x) * (1-x-x^3)^2 ).

Original entry on oeis.org

1, 1, 2, 7, 26, 98, 387, 1589, 6688, 28676, 124880, 550926, 2456831, 11056693, 50152457, 229050621, 1052393802, 4861062466, 22559964766, 105144660498, 491922058878, 2309456782464, 10876596029574, 51372213424194, 243283513468707, 1154929327702775, 5495105429597720
Offset: 0

Views

Author

Seiichi Manyama, Jan 24 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1-x)*(1-x-x^3)^2)/x)
    
  • PARI
    a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t-u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(2*n-2*k,n-3*k).

A370625 Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^3) )^n.

Original entry on oeis.org

1, 0, 0, 3, 4, 5, 27, 63, 116, 354, 945, 2123, 5563, 14846, 36519, 93083, 244068, 622013, 1590318, 4131265, 10658969, 27440808, 71127683, 184324461, 476969939, 1237420755, 3213687698, 8343223779, 21682184311, 56400917786, 146742491187, 381991981659
Offset: 0

Views

Author

Seiichi Manyama, May 01 2024

Keywords

Crossrefs

Cf. A054514.

Programs

  • PARI
    a(n, s=3, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^3) / (1-x) ).
Previous Showing 11-13 of 13 results.