cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A359025 Number of inequivalent tilings of a 9 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 30, 163, 2403, 32097, 459957, 6542578, 93604244
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Crossrefs

Column k = 9 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:

A359026 Number of inequivalent tilings of a 10 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 51, 347, 7048, 130125, 2551794, 49828415
Offset: 0

Views

Author

John Mason, Dec 12 2022

Keywords

Crossrefs

Column k = 10 of A227690.
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:

A165799 Number of tilings of a 4 X n rectangle using right trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 1, 4, 6, 16, 37, 92, 245, 560, 1426, 3720, 9069, 22808, 58177, 145660, 366318, 925536, 2331269, 5872212, 14802941, 37311528, 94038250, 236999064, 597348237, 1505640016, 3794761257, 9564393972, 24106951622, 60759989040, 153141435269, 385986293964
Offset: 0

Views

Author

Alois P. Heinz, Sep 27 2009

Keywords

Examples

			a(4) = 6, because there are 6 tilings of a 4 X 4 rectangle using right trominoes and 2 X 2 tiles:
  .___.___. .___.___. .___.___. .___.___. .___.___. .___.___.
  | . | . | | ._|_. | | ._| . | | ._|_. | | ._|_. | | . |_. |
  |___|___| |_| . |_| |_| |___| |_| ._|_| |_|_. |_| |___| |_|
  | . | . | | |___| | | |___| | | |_| . | | . |_| | | |___| |
  |___|___| |___|___| |___|___| |___|___| |___|___| |___|___|
		

Crossrefs

Column k=4 of A219946.

Programs

  • Maple
    a:= n-> (Matrix([[4, 1, 0, 1, 0$5]]). Matrix(9, (i,j)-> if i=j-1 then 1 elif j=1 then [1, 1, 9, 1, -3, -22, -16, 0, -4][i] else 0 fi)^n)[1,4]: seq(a(n), n=0..30);
  • Mathematica
    Series[ (-6*x^3 - x + 1) / (4*x^9 + 16*x^7 + 22*x^6 + 3*x^5 - x^4 - 9*x^3 - x^2 - x + 1), {x, 0, 31}] // CoefficientList[#, x] & (* Jean-François Alcover, Jun 18 2013, after Alois P. Heinz *)
    LinearRecurrence[{1,1,9,1,-3,-22,-16,0,-4},{1,0,1,4,6,16,37,92,245},40] (* Harvey P. Dale, Nov 09 2024 *)

Formula

G.f.: -(6*x^3+x-1) / (4*x^9+16*x^7+22*x^6+3*x^5-x^4-9*x^3-x^2-x+1).
a(n) = a(n-1) +a(n-2) +9*a(n-3) +a(n-4) -3*a(n-5) -22*a(n-6) -16*a(n-7) -4*a(n-9).

A190759 Number of tilings of a 5 X n rectangle using right trominoes and 2 X 2 tiles.

Original entry on oeis.org

1, 0, 4, 0, 16, 0, 136, 0, 1128, 384, 8120, 6912, 60904, 75136, 491960, 720640, 4023592, 6828928, 32819320, 63472640, 270471784, 574543744, 2256221368, 5119155712, 18940876712, 45266369152, 159625747960, 397949457408, 1350573713256
Offset: 0

Views

Author

Alois P. Heinz, May 18 2011

Keywords

Examples

			a(2) = 4, because there are 4 tilings of a 5 X 2 rectangle using right trominoes and 2 X 2 tiles:
.___. .___. .___. .___.
| . | | . | | ._| |_. |
|___| |___| |_| | | |_|
| ._| |_. | |___| |___|
|_| | | |_| | . | | . |
|___| |___| |___| |___|
		

Crossrefs

Column k=5 of A219946.

Programs

  • Maple
    a:= n-> (Matrix(14, (i, j)-> `if`(i=j-1, 1, `if`(i=14, [-80, -160, 308, -88, -2, 396, -453, -10, 190, -12, -57, 2, 13, 0][j], 0)))^n. <<0, 1/4, 0, 1, 0, 4, 0, 16, 0, 136, 0, 1128, 384, 8120>>)[4,1]: seq(a(n), n=0..30);
  • Mathematica
    a[n_] := (MatrixPower[ Table[ If[i == j-1, 1, If[i == 14, {-80, -160, 308, -88, -2, 396, -453, -10, 190, -12, -57, 2, 13, 0}[[j]], 0]], {i, 1, 14}, {j, 1, 14}], n] . {0, 1/4, 0, 1, 0, 4, 0, 16, 0, 136, 0, 1128, 384, 8120})[[4]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 05 2013, translated from Alois P. Heinz's Maple program *)

Formula

G.f.: (20*x^12+40*x^11 +18*x^10+52*x^9 +35*x^8-26*x^7 +34*x^6-4*x^5 -21*x^4 +2*x^3 +9*x^2-1) / (-80*x^14-160*x^13 +308*x^12-88*x^11 -2*x^10+396*x^9 -453*x^8-10*x^7 +190*x^6-12*x^5 -57*x^4+2*x^3 +13*x^2-1).

A226547 Number of squares in all tilings of a 4 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 4, 25, 98, 386, 1402, 4938, 16936, 57020, 189172, 620397, 2015456, 6496391, 20801576, 66231279, 209847980, 662049349, 2080850248, 6518383898, 20358327362, 63413001935, 197042859318, 610922240964, 1890331512546, 5838350817615, 18001432735438, 55417333344241
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=4 of A226545.
Cf. A054856.

Programs

  • PARI
    concat(0, Vec(x*(4 + 9*x - 10*x^2 - 8*x^3 + 6*x^4 + x^5) / ((1 + x)^2*(1 - 3*x + x^4)^2) + O(x^30))) \\ Colin Barker, Jun 07 2020

Formula

G.f.: (x^5+6*x^4-8*x^3-10*x^2+9*x+4)*x/((x+1)^2*(x^4-3*x+1)^2).
a(n) = 4*a(n-1) + 2*a(n-2) - 12*a(n-3) - 11*a(n-4) + 2*a(n-5) + 10*a(n-6) + 6*a(n-7) - a(n-8) - 2*a(n-9) - a(n-10) for n>9. - Colin Barker, Jun 07 2020

A362145 Maximum number of ways in which a set of integer-sided squares can tile an n X 4 rectangle.

Original entry on oeis.org

1, 1, 3, 6, 16, 37, 105, 250, 726, 1824, 5148, 13406, 37150, 99246, 271533, 739222, 2003686, 5534352, 14894898, 41614480, 112569696, 329633400, 939351720, 2713971172, 7790778688, 22262413872, 64295778000, 182043931368, 528451813656, 1484599951100, 4328456538812
Offset: 0

Views

Author

Pontus von Brömssen, Apr 10 2023

Keywords

Crossrefs

Fourth column of A362142.
Cf. A054856, A361220 (rectangular pieces).
Previous Showing 11-16 of 16 results.