cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A304867 Number of non-isomorphic hypertrees of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 6, 13, 20, 41, 70, 144, 266, 545, 1072, 2210, 4491, 9388, 19529, 41286, 87361, 186657, 399927, 862584, 1866461, 4058367, 8852686, 19384258, 42570435, 93783472, 207157172, 458805044, 1018564642, 2266475432, 5053991582, 11292781891, 25280844844
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Comments

A hypertree E is a connected antichain of finite sets satisfying Sum_{e in E} (|e| - 1) = |U(E)| - 1. The weight of a hypertree is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A035053).
From Kevin Ryde, Feb 25 2020: (Start)
a(n), except at n=1, is the number of free trees of n edges (so n+1 vertices) where any two leaves are an even distance apart. All trees are bipartite graphs and this condition is equivalent to all leaves being in the same bipartite half. The diameter of a tree is always between two leaves so these trees have even diameter (A000676).
The correspondence between hypertrees and these free trees is described for instance by Bacher (start of section 1.2). In such a free tree, call a vertex "even" if it is an even distance from a leaf. The hypertree vertices are these even vertices. Each hyperedge is the set of vertices surrounding an odd vertex, so hypertree weight is the total number of edges in the free tree.
(End)

Examples

			Non-isomorphic representatives of the a(6) = 5 hypertrees are the following:
  {{1,2,3,4,5,6}}
  {{1,2},{1,3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2},{1,3},{1,4}}
  {{1,2},{1,3},{2,4}}
Non-isomorphic representatives of the a(7) = 6 hypertrees are the following:
  {{1,2,3,4,5,6,7}}
  {{1,2},{1,3,4,5,6}}
  {{1,2,3},{1,4,5,6}}
  {{1,2},{1,3},{1,4,5}}
  {{1,2},{1,3},{2,4,5}}
  {{1,3},{2,4},{1,2,5}}
From _Kevin Ryde_, Feb 25 2020: (Start)
a(6) = 5 hypertrees of weight 6 and their corresponding free trees of 6 edges (7 vertices).  Each * is an "odd" vertex (odd distance to a leaf).  Each hyperedge is the set of "even" vertices surrounding an odd.
  {1,2,3,4,5,6}       3   2
                       \ /
                      4-*-1      (star 7)
                       / \
                      5   6
  .
  {1,2},{1,3,4,5}               /-3
                      2--*--1--*--4
                                \-5
  .
  {1,2,3},{1,4,5}     2-\       /-4
                         *--1--*
                      3-/       \-5
  .
  {1,2},{1,3},{1,4}    /-*--2
                      1--*--3
                       \-*--4
  .
  {1,2},{2,4},{1,3}   3--*--1--*--2--*--4   (path 7)
(End)
		

Crossrefs

Programs

  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
    ser[v_] := Sum[v[[i]] x^(i-1), {i, 1, Length[v]}] + O[x]^Length[v];
    c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v];
    seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]&];
    seq[40] (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    c(n)={my(v=[1]); for(i=1, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v}
    seq(n)={my(u=c(n)); Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*Ser(u) + x + O(x*x^n))} \\ Andrew Howroyd, Aug 29 2018

Formula

a(n) = Sum_{k=1..floor(n/2)} A318601(n+1-k, k). - Andrew Howroyd, Aug 29 2018

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018

A322700 Number of unlabeled graphs with loops spanning n vertices.

Original entry on oeis.org

1, 1, 4, 14, 70, 454, 4552, 74168, 2129348, 111535148, 10812483376, 1945437208224, 650378721156736, 404749938336404704, 470163239887698967104, 1022592854829028311090816, 4177826139658552046627175072, 32163829440870460348768023969632
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

The span of a graph is the union of its edges. The not necessarily spanning case is A000666.

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Select[Tuples[Range[n],2],OrderedQ]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,0,8}]//Differences (* Mathematica 8.0+ *)
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A322700(n): return int(sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))-sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n-1))) if n else 1 # Chai Wah Wu, Jul 14 2024

Formula

First differences of A000666.

A035053 Number of connected graphs on n unlabeled nodes where every block is a complete graph.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 59, 165, 496, 1540, 4960, 16390, 55408, 190572, 665699, 2354932, 8424025, 30424768, 110823984, 406734060, 1502876903, 5586976572, 20884546416, 78460794158, 296124542120, 1122346648913, 4270387848473
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n unlabeled nodes, i.e., connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134955 for hyperforests.
Graphs where every block is a complete graph are also called block graphs or clique tree. They can be characterized as induced-diamond-free chordal graphs. - Falk Hüffner, Jul 25 2019

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(5) = 9 hypertrees are the following:
  {{1,2,3,4,5}}
  {{1,5},{2,3,4,5}}
  {{1,2,5},{3,4,5}}
  {{1,2},{2,5},{3,4,5}}
  {{1,4},{2,5},{3,4,5}}
  {{1,5},{2,5},{3,4,5}}
  {{1,3},{2,4},{3,5},{4,5}}
  {{1,4},{2,5},{3,5},{4,5}}
  {{1,5},{2,5},{3,5},{4,5}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.14).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): a:= n-> B(n)+C(n) -add(B(k)*C(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    ClearAll[etr, b, a]; etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0]=0; b[n_] := b[n] = etr[etr[b]][n-1]; a[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; Table[ a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 09 2012, after Alois P. Heinz *)
  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u)))} \\ Andrew Howroyd, May 22 2018

Formula

G.f.: A(x)=1+(C(x)-1)*(1-B(x)). B: G.f. for A007563. C: G.f. for A035052.
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.245899549044224207821149415964395... . - Vaclav Kotesovec, Jul 26 2014
a(n) = A304937(n) - A304937(n-1) for n>1, a(n) = 1 for n<2. - Gus Wiseman, May 22 2018

A306005 Number of non-isomorphic set-systems of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 12, 19, 51, 106, 274, 647, 1773, 4664, 13418, 38861, 118690, 370588, 1202924, 4006557, 13764760, 48517672, 175603676, 651026060, 2471150365, 9590103580, 38023295735, 153871104726, 635078474978, 2671365285303, 11444367926725, 49903627379427
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

A set-system is a finite set of finite nonempty sets (edges). The weight is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 12 set-systems:
  {{1,2,3,4,5,6}}
  {{1,2},{3,4,5,6}}
  {{1,5},{2,3,4,5}}
  {{3,4},{1,2,3,4}}
  {{1,2,3},{4,5,6}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{3,4},{5,6}}
  {{1,2},{3,5},{4,5}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024

Formula

a(n) = A283877(n) - A330053(n). - Gus Wiseman, Dec 09 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019

A322395 Number of labeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 4, 26, 548, 22504, 1708336, 241874928, 65285161232, 34305887955616, 35573982726480064, 73308270568902715136, 301210456065963448091072, 2471487759846321319412778624, 40526856087731237340916330352896, 1328570640536613080046570271722309632
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16;
    seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n + 1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k - 1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
    A095983 = seq[nmax];
    a[n_] := If[n<3, 1, n+Sum[Binomial[n, k]*A095983[[k+1]]*k^(n-k), {k, 1, n}]];
    a /@ Range[0, nmax] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)

Formula

a(n) = n + Sum_{k=1..n} binomial(n,k)*A095983(k)*k^(n-k) for n >= 3. - Andrew Howroyd, Dec 07 2018

Extensions

a(6)-a(16) from Andrew Howroyd, Dec 07 2018

A322338 Edge-connectivity of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 3, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The edge-connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			2093 is the Heinz number of (9,6,4), corresponding to the multiset partition {{1,1},{1,2},{2,2}}, which can be made disconnected by removing only the part {1,2}, so a(2093) = 1.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[PrimeOmega[n]-Max@@PrimeOmega/@Select[Divisors[n],Length[csm[primeMS/@primeMS[#]]]!=1&],{n,100}]

A134955 Number of "hyperforests" on n unlabeled nodes, i.e., hypergraphs that have no cycles, assuming that each edge contains at least two vertices.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 50, 128, 351, 1009, 3035, 9464, 30479, 100712, 340072, 1169296, 4082243, 14438577, 51643698, 186530851, 679530937, 2494433346, 9219028889, 34280914106, 128179985474, 481694091291, 1818516190252, 6894350122452
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Comments

A hyperforest is an antichain of finite nonempty sets (edges) whose connected components are hypertrees. It is spanning if all vertices are covered by some edge. However, it is common to represent uncovered vertices as singleton edges. For example, {{1,2},{1,4}} and {{3},{1,2},{1,4}} may represent the same hyperforest, the former being free of singletons (see example 2) and the latter being spanning (see example 1). This is different from a hyperforest with singleton edges allowed, which is one whose non-singleton edges only are required to form an antichain. For example, {{1},{2},{1,3},{2,3}} is a hyperforest with singleton edges allowed. - Gus Wiseman, May 22 2018
Equivalently, number of block graphs on n nodes, that is, graphs where every block is a complete graph. These graphs can be characterized as induced-diamond-free chordal graphs. - Falk Hüffner, Jul 25 2019

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(4) = 9 spanning hyperforests are the following:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{1,2},{3,4}}
  {{1,4},{2,3,4}}
  {{1},{2},{3,4}}
  {{1},{2,4},{3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1},{2},{3},{4}}
Non-isomorphic representatives of the a(4) = 9 hyperforests spanning up to 4 vertices without singleton edges are the following:
  {}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,2},{3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
(End)
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - Washington Bomfim, Sep 25 2008

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): aa:= proc(n) option remember; B(n)+C(n) -add(B(k)*C(n-k), k=0..n) end: a:= etr(aa): seq(a(n), n=0..27); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b = etr[B]; c = etr[b]; B[n_] := If[n == 0, 0, c[n-1]]; CC = etr[B]; aa[n_] := aa[n] = B[n]+CC[n]-Sum[B[k]*CC[n-k], {k, 0, n}]; a = etr[aa]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz*)
  • PARI
    \\ here b is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, May 22 2018

Formula

Euler transform of A035053. - N. J. A. Sloane, Jan 30 2008
a(n) = Sum of prod_{k=1}^n\,{A035053(k) + c_k -1 /choose c_k} over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0. - Washington Bomfim, Sep 25 2008
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.36483930544... . - Vaclav Kotesovec, Jul 26 2014

A134957 Number of hyperforests with n unlabeled vertices: analog of A134955 when edges of size 1 are allowed (with no two equal edges).

Original entry on oeis.org

1, 2, 6, 20, 75, 310, 1422, 7094, 37877, 213610, 1256422, 7641700, 47735075, 304766742, 1981348605, 13079643892, 87480944764, 591771554768, 4042991170169, 27864757592632, 193549452132550, 1353816898675732, 9529263306483357, 67457934248821368, 480019516988969011
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(3) = 20 hyperforests are the following:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{1},{2}}
  {{1},{2,3}}
  {{2},{1,2}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1},{2},{1,2}}
  {{1},{3},{2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{3},{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
  {{1},{2},{3},{2,3}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
  {{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
  {{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
(End)
		

Crossrefs

Programs

  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
    ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
    b[n_] := Module[{v = {1}}, For[i = 2, i <= n, i++, v = Join[{1}, EulerT[EulerT[2 v]]]]; v];
    seq[n_] := Module[{u = 2 b[n]}, Join[{1}, EulerT[ser[EulerT[u]]*(1 - x*ser[u]) + O[x]^n // CoefficientList[#, x]&]]];
    seq[24] (* Jean-François Alcover, Feb 10 2020, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A318494 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
    seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, Aug 27 2018

Formula

Euler transform of A134959. - Gus Wiseman, May 20 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018

A144959 A134955(n) - A134955(n-1). Number of hyperforests spanning n unlabeled nodes without isolated vertices.

Original entry on oeis.org

1, 0, 1, 2, 5, 11, 30, 78, 223, 658, 2026, 6429, 21015, 70233, 239360, 829224, 2912947, 10356334, 37205121, 134887153, 493000086, 1814902409, 6724595543, 25061885217, 93899071368, 353514105817, 1336822098961, 5075833932200
Offset: 0

Views

Author

Washington Bomfim, Sep 27 2008

Keywords

Comments

a(n) is the number of hyperforests with n unlabeled nodes without isolated vertices. This follows from the fact that for n>0 A134955(n-1) counts the hyperforests of order n with one or more isolated nodes.

Examples

			From _Gus Wiseman_, May 21 2018: (Start)
Non-isomorphic representatives of the a(5) = 11 hyperforests are the following:
  {{1,2,3,4,5}}
  {{1,2},{3,4,5}}
  {{1,5},{2,3,4,5}}
  {{1,2,5},{3,4,5}}
  {{1,2},{2,5},{3,4,5}}
  {{1,2},{3,5},{4,5}}
  {{1,4},{2,5},{3,4,5}}
  {{1,5},{2,5},{3,4,5}}
  {{1,3},{2,4},{3,5},{4,5}}
  {{1,4},{2,5},{3,5},{4,5}}
  {{1,5},{2,5},{3,5},{4,5}}
(End)
		

Crossrefs

Cf. A030019, A035053, A048143, A054921, A134954, A134955, A134957, A144958 (unlabeled forests without isolated vertices), A144959, A304716, A304717, A304867, A304911.

Programs

  • Mathematica
    etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b];
    b[0] = 0; b[n_] := b[n] = etr[etr[b]][n-1];
    c[1] = 0; c[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}];
    a = etr[c];
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 12 2018, after Alois P. Heinz's code for A035053 *)
  • PARI
    \\ here b is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); concat([1], EulerT(concat([0], Vec(Ser(EulerT(u))*(1-x*Ser(u))-1))))} \\ Andrew Howroyd, May 22 2018

Formula

Euler transform of b(1) = 0, b(n > 1) = A035053(n). - Gus Wiseman, May 21 2018

A304912 Number of non-isomorphic spanning hyperforests of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 29, 56, 97, 186, 337, 657, 1238, 2442, 4768, 9569, 19174, 39151, 80154, 166211, 346239, 727853, 1537611, 3270710, 6989669, 15018389, 32405378, 70230238, 152772075, 333552711, 730632928, 1605459844, 3537861659, 7817447580, 17317397837
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Comments

A spanning hyperforest is an antichain of finite nonempty sets, which cover a set of n vertices, whose connected components are hypertrees (see A304867). The weight of a hypertree is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A134957).

Examples

			The a(6) = 18 spanning hyperforests are the following:
  {{1,2,3,4,5,6}}
  {{1},{2,3,4,5,6}}
  {{1,2},{3,4,5,6}}
  {{1,5},{2,3,4,5}}
  {{1,2,3},{4,5,6}}
  {{1,2,5},{3,4,5}}
  {{1},{2},{3,4,5,6}}
  {{1},{2,3},{4,5,6}}
  {{1},{2,5},{3,4,5}}
  {{1,2},{3,4},{5,6}}
  {{1,2},{3,5},{4,5}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1},{2},{3},{4,5,6}}
  {{1},{2},{3,4},{5,6}}
  {{1},{2},{3,5},{4,5}}
  {{1},{2},{3},{4},{5,6}}
  {{1},{2},{3},{4},{5},{6}}
		

Crossrefs

Programs

  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
    ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
    c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v];
    seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]& // Rest // EulerT // Prepend[#, 1]&];
    seq[36] (* Jean-François Alcover, Feb 09 2020, after Andrew Howroyd *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    c(n)={my(v=[1]); for(i=2, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v}
    seq(n)={my(u=c(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*(Ser(u) - 1)+ O(x*x^n))))} \\ Andrew Howroyd, Aug 29 2018

Formula

Euler transform of A304867.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018
Previous Showing 11-20 of 53 results. Next