A133130
Number of 0/1 colorings of an n X n square for which no 2 by 2 subsquare is monochromatic.
Original entry on oeis.org
1, 2, 14, 322, 23858, 5735478, 4468252414, 11282914491066, 92343922085798834, 2449629600675855540670, 210618917058297166847778158, 58694743562963266347581955456602, 53015873227026172656988353687982082782, 155209215810704933798454506348361943868443334
Offset: 0
a(2) = 14 because 2 of the 16 unrestricted colorings are monochromatic.
A202396
Triangle T(n,k), read by rows, given by (2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 2, 2, 5, 8, 3, 13, 27, 19, 5, 34, 86, 86, 42, 8, 89, 265, 338, 234, 85, 13, 233, 798, 1227, 1084, 567, 166, 21, 610, 2362, 4230, 4510, 3038, 1286, 314, 34, 1597, 6898, 14058, 17474, 14284, 7814, 2774, 582, 55
Offset: 0
Triangle begins :
1
2, 2
5, 8, 3
13, 27, 19, 5
34, 86, 86, 42, 8
89, 265, 338, 234, 85, 13
A322940
a(n) = [x^n] (4*x^2 + x - 1)/(2*x^2 + 3*x - 1).
Original entry on oeis.org
1, 2, 4, 16, 56, 200, 712, 2536, 9032, 32168, 114568, 408040, 1453256, 5175848, 18434056, 65653864, 233829704, 832796840, 2966049928, 10563743464, 37623330248, 133997477672, 477239093512, 1699712235880, 6053614894664, 21560269155752, 76788037256584
Offset: 0
-
a := proc(n) option remember; `if`(n < 3, [1, 2, 4][n+1], 3*a(n-1) + 2*a(n-2)) end:
seq(a(n), n=0..26);
-
Join[{1}, LinearRecurrence[{3, 2}, {2, 4}, 26]] (* Jean-François Alcover, Jul 13 2019 *)
A254599
Numbers of words on alphabet {0,1,...,9} with no subwords ii, for i from {0,1}.
Original entry on oeis.org
1, 10, 98, 962, 9442, 92674, 909602, 8927810, 87627106, 860066434, 8441614754, 82855064258, 813228496354, 7981896981250, 78342900802082, 768941283068738, 7547214754035298, 74076463050867586, 727065885490090658, 7136204673817756610, 70042369148280534754
Offset: 0
-
[n le 1 select 10^n else 9*Self(n)+8*Self(n-1): n in [0..20]]; // Bruno Berselli, Feb 02 2015
-
RecurrenceTable[{a[0] == 1, a[1] == 10, a[n] == 9 a[n - 1] + 8 a[n - 2]}, a[n], {n, 0, 20}] (* Bruno Berselli, Feb 02 2015 *)
-
Vec((1 + x)/(1 - 9*x - 8*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017
A254659
Numbers of words on alphabet {0,1,...,8} with no subwords ii, where i is from {0,1,2,3}.
Original entry on oeis.org
1, 9, 77, 661, 5673, 48689, 417877, 3586461, 30781073, 264180889, 2267352477, 19459724261, 167014556473, 1433415073089, 12302393367077, 105586222302061, 906201745251873, 7777545073525289, 66751369314461677, 572898679883319861, 4916946285638867273
Offset: 0
-
[n le 1 select 9^n else 8*Self(n)+5*Self(n-1): n in [0..20]];
-
RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 5 a[n - 2]}, a[n], {n, 0, 20}]
-
Vec((1 + x)/(1 - 8*x -5*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017
A254662
Numbers of words on alphabet {0,1,...,7} with no subwords ii, where i is from {0,1,...,4}.
Original entry on oeis.org
1, 8, 59, 437, 3236, 23963, 177449, 1314032, 9730571, 72056093, 533584364, 3951258827, 29259564881, 216670730648, 1604473809179, 11881328856197, 87982723420916, 651523050515003, 4824609523867769, 35726835818619392, 264561679301939051, 1959112262569431533
Offset: 0
-
[n le 1 select 8^n else 7*Self(n)+3*Self(n-1): n in [0..20]];
-
RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 3 a[n - 2]}, a[n], {n, 0, 20}]
-
Vec((1+x)/(1-7*x-3*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016
A287811
Number of septenary sequences of length n such that no two consecutive terms have distance 5.
Original entry on oeis.org
1, 7, 45, 291, 1881, 12159, 78597, 508059, 3284145, 21229047, 137226717, 887047443, 5733964809, 37064931183, 239591481525, 1548743682699, 10011236540769, 64713650292711, 418315611378573, 2704034619149571, 17479154549033145, 112987031151647583
Offset: 0
For n=2 the a(2) = 49-4 = 45 sequences contain every combination except these four: 05, 50, 16, 61.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
-
LinearRecurrence[{6, 3}, {1,7}, 40]
-
def a(n):
if n in [0, 1]:
return [1, 7][n]
return 6*a(n-1)-3*a(n-2)
A287838
Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 8.
Original entry on oeis.org
1, 11, 115, 1205, 12625, 132275, 1385875, 14520125, 152130625, 1593906875, 16699721875, 174966753125, 1833166140625, 19206495171875, 201230782421875, 2108340300078125, 22089556912890625, 231437270629296875, 2424820490857421875, 25405391261720703125
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287839.
-
LinearRecurrence[{10, 5}, {1, 11, 115}, 20]
-
Vec((1 + x) / (1 - 10*x - 5*x^2) + O(x^40)) \\ Colin Barker, Nov 25 2017
-
def a(n):
if n in [0,1,2]:
return [1, 11, 115][n]
return 10*a(n-1) + 5*a(n-2)
A287805
Number of quinary sequences of length n such that no two consecutive terms have distance 2.
Original entry on oeis.org
1, 5, 19, 73, 281, 1083, 4175, 16097, 62065, 239307, 922711, 3557761, 13717913, 52893147, 203943935, 786361409, 3032030689, 11690820555, 45077144455, 173807214241, 670161078089, 2583988659867, 9963272432111, 38416111919777, 148123788152017, 571131629935179
Offset: 0
For n=2 the a(2)=19=25-6 sequences contain every combination except these six: 02,20,13,31,24,42.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{4, 1, -6}, {1, 5, 19, 73}, 40]
-
def a(n):
if n in [0,1,2,3]:
return [1,5,19,73][n]
return 4*a(n-1)+a(n-2)-6*a(n-3)
A287806
Number of senary sequences of length n such that no two consecutive terms have distance 1.
Original entry on oeis.org
1, 6, 26, 114, 500, 2194, 9628, 42252, 185422, 813722, 3571010, 15671340, 68773514, 301811860, 1324498252, 5812546998, 25508302906, 111942925778, 491260382084, 2155891150146, 9461106209228, 41519967599596, 182209952129086, 799626506818554, 3509152727035810
Offset: 0
For n=2 the a(2)=26=36-10 sequences contain every combination except these ten: 01,10,12,21,23,32,34,43,45,54.
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
-
LinearRecurrence[{5, -2, -3}, {1, 6, 26, 114}, 40]
-
def a(n):
if n in [0, 1, 2, 3]:
return [1, 6, 26, 114][n]
return 5*a(n-1)-2*a(n-2)-3*a(n-3)
Previous
Showing 31-40 of 62 results.
Next
Comments