cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A122372 Dimension of 8-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 8 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).

Original entry on oeis.org

1, 7, 55, 438, 3498, 27962, 223604, 1788406, 14305102, 114429193, 915366442, 7322521512, 58577537621, 468602617723, 3748697751384, 29988696932490, 239903055854075, 1919175464438065, 15353030007717639, 122821355074655309
Offset: 0

Views

Author

Mike Zabrocki, Aug 30 2006

Keywords

Examples

			A122371 a(1) = 7 because x1-x2, x2-x3, x3-x4, x4-x5, x5-x6, x6-x7, x7-x8 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5+d_x6+d_x7.
		

Crossrefs

Programs

  • Maple
    coeffs(convert(series((1-21*q+175*q^2-735*q^3+1624*q^4-1764*q^5+720*q^6)/ (1-28*q+316*q^2-1845*q^3+5925*q^4-10190*q^5+8249*q^6-2119*q^7), q,20),`+`)-O(q^20),q);
  • Mathematica
    n = 8; gf = Sum[n!/(n-d)! q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]/ Sum[q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}] + O[q]^20;
    CoefficientList[gf, q] (* Jean-François Alcover, Dec 03 2018 *)

Formula

G.f.: (1-21*q+175*q^2-735*q^3+1624*q^4-1764*q^5+720*q^6)/ (1-28*q+316*q^2-1845*q^3+5925*q^4-10190*q^5+8249*q^6-2119*q^7) more generally, sum( n!/(n-d)!*q^d/prod((1-r*q),r=1..d), d=0..n) / sum( q^d/prod((1-r*q), r=1..d), d=0..n) where n=8.

A124293 Number of free generators of degree n of symmetric polynomials in 5-noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 91, 406, 1896, 9093, 44279, 217500, 1073657, 5314870, 26352107, 130778039, 649352929, 3225196431, 16021584848, 79597062632, 395469296912, 1964908443531, 9762920818182, 48508934285620, 241027326818991, 1197601448443963, 5950578465799856
Offset: 1

Views

Author

Mike Zabrocki, Oct 24 2006

Keywords

Comments

Also the number of non-splitable set partitions (see Bergeron et al. reference) of length <=5

Crossrefs

Programs

  • Magma
    I:=[1,1,2,6]; [n le 4 select I[n] else 10*Self(n-1)-32*Self(n-2)+37*Self(n-3)-11*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    a:= n-> (Matrix([[6,2,1,1]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [10, -32, 37, -11][i] else 0 fi)^(n-1))[1,4]: seq(a(n), n=1..30); # Alois P. Heinz, Sep 05 2008
  • Mathematica
    LinearRecurrence[{10, -32, 37, -11}, {1, 1, 2, 6}, 30] (* Jean-François Alcover, Jan 08 2016 *)

Formula

O.g.f. (1-9q+24q^2-19q^3)/(1-10q+32q^2-37q^3+11q^4) = (1 - 1/(sum_{k=0}^5 q^k/(prod_{i=1}^k (1-i*q))))/q a(n) = add( A055105(n,k), k=1..5) = add(A055106(n,k),k=1..4)

A124294 Number of free generators of degree n of symmetric polynomials in 6-noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 425, 2119, 11184, 61499, 347980, 2007643, 11734604, 69181578, 410179429, 2441025998, 14562284120, 87012222100, 520458020949, 3115224471290, 18654716694895, 111741999352603, 669466118302169
Offset: 1

Views

Author

Mike Zabrocki, Oct 24 2006

Keywords

Comments

Also the number of non-splitable set partitions (see Bergeron et al. reference) of length <=6

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{15, -81, 192, -189, 53}, {1, 1, 2, 6, 22}, 23] (* Jean-François Alcover, Dec 04 2018 *)

Formula

O.g.f.: (1-14*q+68*q^2-135*q^3+91*q^4)/(1-15*q+81*q^2-192*q^3+189*q^4-53*q^5) = (1 - 1/(sum_{k=0}^6 q^k/(prod_{i=1}^k (1-i*q))))/q a(n) = add( A055105(n,k), k=1..6) = add(A055106(n,k),k=1..5)

A124295 Number of free generators of degree n of symmetric polynomials in 7-noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 426, 2145, 11589, 66425, 399682, 2500037, 16115347, 106266473, 712602272, 4837372576, 33128183406, 228308233098, 1580495251012, 10976092266889, 76398165848091, 532614662149795, 3717370694711130
Offset: 1

Views

Author

Mike Zabrocki, Oct 24 2006

Keywords

Comments

Also the number of non-splitable set partitions (see Bergeron et al. reference) of length <=7

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{21, -170, 669, -1314, 1157, -309}, {1, 1, 2, 6, 22, 92}, 23] (* Jean-François Alcover, Jan 27 2019 *)

Formula

O.g.f.: (1-20*q+151*q^2-535*q^3+881*q^4-531*q^5) / (1-21*q+170*q^2 -669*q^3 +1314*q^4-1157*q^5+309*q^6) = (1 - 1/(Sum_{k=0..7} q^k/(prod_{i=1}^k (1-i*q))))/q.
a(n) = add( A055105(n,k), k=1..7) = add(A055106(n,k), k=1..6).
Previous Showing 11-14 of 14 results.