A122372
Dimension of 8-variable non-commutative harmonics (twisted derivative). The dimension of the space of non-commutative polynomials in 8 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i/=j).
Original entry on oeis.org
1, 7, 55, 438, 3498, 27962, 223604, 1788406, 14305102, 114429193, 915366442, 7322521512, 58577537621, 468602617723, 3748697751384, 29988696932490, 239903055854075, 1919175464438065, 15353030007717639, 122821355074655309
Offset: 0
A122371 a(1) = 7 because x1-x2, x2-x3, x3-x4, x4-x5, x5-x6, x6-x7, x7-x8 are all of degree 1 and are killed by the differential operator d_x1+d_x2+d_x3+d_x4+d_x5+d_x6+d_x7.
- N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math/0502082 [math.CO], 2005; Canad. J. Math. 60 (2008), no. 2, 266-296.
- C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
- M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.
- Index entries for linear recurrences with constant coefficients, signature (28,-316,1845,-5925,10190,-8249,2119).
Cf.
A055105,
A055107,
A087903,
A074664,
A008277,
A112340,
A122367,
A122368,
A122369,
A122370,
A122371.
-
coeffs(convert(series((1-21*q+175*q^2-735*q^3+1624*q^4-1764*q^5+720*q^6)/ (1-28*q+316*q^2-1845*q^3+5925*q^4-10190*q^5+8249*q^6-2119*q^7), q,20),`+`)-O(q^20),q);
-
n = 8; gf = Sum[n!/(n-d)! q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}]/ Sum[q^d/Product[(1 - r q), {r, 1, d}], {d, 0, n}] + O[q]^20;
CoefficientList[gf, q] (* Jean-François Alcover, Dec 03 2018 *)
A124293
Number of free generators of degree n of symmetric polynomials in 5-noncommuting variables.
Original entry on oeis.org
1, 1, 2, 6, 22, 91, 406, 1896, 9093, 44279, 217500, 1073657, 5314870, 26352107, 130778039, 649352929, 3225196431, 16021584848, 79597062632, 395469296912, 1964908443531, 9762920818182, 48508934285620, 241027326818991, 1197601448443963, 5950578465799856
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..500
- N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math/0502082 [math.CO], 2005.
- N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, Canad. J. Math. 60 (2008), no. 2, 266-296.
- M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.
- Index entries for linear recurrences with constant coefficients, signature (10,-32,37,-11).
-
I:=[1,1,2,6]; [n le 4 select I[n] else 10*Self(n-1)-32*Self(n-2)+37*Self(n-3)-11*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
-
a:= n-> (Matrix([[6,2,1,1]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [10, -32, 37, -11][i] else 0 fi)^(n-1))[1,4]: seq(a(n), n=1..30); # Alois P. Heinz, Sep 05 2008
-
LinearRecurrence[{10, -32, 37, -11}, {1, 1, 2, 6}, 30] (* Jean-François Alcover, Jan 08 2016 *)
A124294
Number of free generators of degree n of symmetric polynomials in 6-noncommuting variables.
Original entry on oeis.org
1, 1, 2, 6, 22, 92, 425, 2119, 11184, 61499, 347980, 2007643, 11734604, 69181578, 410179429, 2441025998, 14562284120, 87012222100, 520458020949, 3115224471290, 18654716694895, 111741999352603, 669466118302169
Offset: 1
- N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math/0502082 [math.CO], 2005; Canad. J. Math. 60 (2008), no. 2, 266-296.
- M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.
- Index entries for linear recurrences with constant coefficients, signature (15, -81, 192, -189, 53).
-
LinearRecurrence[{15, -81, 192, -189, 53}, {1, 1, 2, 6, 22}, 23] (* Jean-François Alcover, Dec 04 2018 *)
A124295
Number of free generators of degree n of symmetric polynomials in 7-noncommuting variables.
Original entry on oeis.org
1, 1, 2, 6, 22, 92, 426, 2145, 11589, 66425, 399682, 2500037, 16115347, 106266473, 712602272, 4837372576, 33128183406, 228308233098, 1580495251012, 10976092266889, 76398165848091, 532614662149795, 3717370694711130
Offset: 1
- N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math/0502082 [math.CO], 2005; Canad. J. Math. 60 (2008), no. 2, 266-296.
- M. C. Wolf, Symmetric functions of noncommutative elements, Duke Math. J. 2 (1936), 626-637.
- Index entries for linear recurrences with constant coefficients, signature (21, -170, 669, -1314, 1157, -309).
-
LinearRecurrence[{21, -170, 669, -1314, 1157, -309}, {1, 1, 2, 6, 22, 92}, 23] (* Jean-François Alcover, Jan 27 2019 *)
Comments