cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A356436 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} d^(k/d) )/k.

Original entry on oeis.org

1, 5, 23, 146, 874, 8124, 62628, 707664, 7860816, 103284000, 1179669600, 24454569600, 324615427200, 5740203974400, 119579523436800, 2688723275212800, 46084905896601600, 1383333631684300800, 26411386476116275200, 868104140064602112000
Offset: 1

Views

Author

Seiichi Manyama, Aug 07 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k, d, d^(k/d))/k);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-k*x^k)/k)/(1-x)))

Formula

a(n) = n! * Sum_{k=1..n} A055225(k)/k.
E.g.f.: -(1/(1-x)) * Sum_{k>0} log(1 - k*x^k)/k.
a(n) ~ (n-1)! * 3^((n + 3 - mod(n,3))/3)/2. - Vaclav Kotesovec, Aug 07 2022

A308593 a(n) = Sum_{d|n} d^(n^2/d).

Original entry on oeis.org

1, 5, 28, 513, 3126, 840242, 823544, 8606711809, 7625984905477, 1221277338483250, 285311670612, 89215914432866222355906, 302875106592254, 316913110043605007120962336162, 608295209422788113565012727970423808, 680564733921105089459460296530789924865
Offset: 1

Views

Author

Seiichi Manyama, Jun 09 2019

Keywords

Crossrefs

Diagonal of A308509.

Programs

  • Mathematica
    Table[Sum[d^(n^2/d), {d, Divisors[n]}], {n,1,20}] (* Vaclav Kotesovec, Jun 09 2019 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(n^2/d))}

A308675 a(n) = Sum_{d|n} d^(d^2 * n).

Original entry on oeis.org

1, 257, 7625597484988, 340282366920938463463374607431768276993, 2350988701644575015937473074444491355637331113544175043017503412556834518909454345703126
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2019

Keywords

Comments

The next term has 169 digits. - Harvey P. Dale, Feb 29 2020

Crossrefs

Column k=3 of A308676.

Programs

  • Mathematica
    Table[Total[#^(#^2 n)&/@Divisors[n]],{n,5}] (* Harvey P. Dale, Feb 29 2020 *)
    a[n_] := DivisorSum[n, #^(n * #^2) &]; Array[a, 5] (* Amiram Eldar, May 11 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(d^2*n))}
    
  • PARI
    N=10; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^k^2*x)^k)^(1/k)))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k^(k^2)*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.

A344061 a(n) = Sum_{d|n} sigma(d)^(n/d).

Original entry on oeis.org

1, 4, 5, 17, 7, 56, 9, 146, 78, 298, 13, 1501, 15, 2276, 1265, 9219, 19, 25716, 21, 77519, 16929, 177328, 25, 739582, 7808, 1594562, 264382, 5611241, 31, 15699452, 33, 48863172, 4196081, 129140542, 312753, 447589422, 39, 1162261928, 67111665, 3771805472, 43, 10764897556, 45
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1 , #]^(n/#) &]; Array[a, 43] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d)^(n/d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)*x^k/(1-sigma(k)*x^k)))

Formula

G.f.: Sum_{k >= 1} sigma(k) * x^k/(1 - sigma(k) * x^k).
If p is prime, a(p) = 2 + p.

A356588 Expansion of e.g.f. ( Product_{k>0} 1/(1 - k * x^k)^(1/k) )^x.

Original entry on oeis.org

1, 0, 2, 9, 44, 450, 2754, 45360, 340304, 6481944, 81801000, 1370631240, 21731534472, 511117017840, 8113055559504, 193958323289640, 4765385232157440, 108183734293844160, 2754467397591689664, 80416694712647352960, 2132862160676063137920, 67803682111729108433280
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-k*x^k)^(1/k))^x))
    
  • PARI
    a055225(n) = sumdiv(n, d, d^(n/d));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j!*a055225(j-1)/(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1, a(1) = 0; a(n) = Sum_{k=2..n} k! * A055225(k-1)/(k-1) * binomial(n-1,k-1) * a(n-k).

A376016 a(n) = Sum_{d|n} d^(n/d) * binomial(n/d,d).

Original entry on oeis.org

1, 2, 3, 8, 5, 30, 7, 104, 36, 330, 11, 1296, 13, 2702, 2445, 7440, 17, 33030, 19, 51220, 76566, 112662, 23, 699216, 3150, 639002, 1653399, 2064412, 29, 10620300, 31, 12451872, 29229288, 17825826, 1640660, 190101888, 37, 89653286, 455976417, 441305440, 41
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, d^(n/d)*binomial(n/d, d));
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, (k*x^k)^k/(1-k*x^k)^(k+1)))
    
  • Python
    from math import comb
    from itertools import takewhile
    from sympy import divisors
    def A376016(n): return sum(d**(m:=n//d)*comb(m,d) for d in takewhile(lambda d:d**2<=n,divisors(n))) # Chai Wah Wu, Sep 06 2024

Formula

G.f.: Sum_{k>=1} (k*x^k)^k / (1 - k*x^k)^(k+1).
If p is prime, a(p) = p.

A214845 Triangle read by rows: T(n,m) =(n/k)^(k-1) mod k, where k is the m-th divisor of n, 1 <= m <= tau(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 3, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 4, 1, 0, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 4, 3, 8, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 3, 1, 2, 1, 0, 1, 0, 1, 1, 1, 5, 3, 4, 1
Offset: 1

Views

Author

Gerasimov Sergey, Mar 08 2013

Keywords

Comments

Row lengths are tau(n) = A000005(n).
The sequence of row sums starts: 0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 7, 1, 3, 3, 1, 1, 9, 1, 5, 3, 3, 1, 17, 1, 3, 1, 7, 1, 16, 1, 1, 3, 3, 3, 26, 1, 3, 3, 19, 1, 12, 1, 7, 18, 3, 1, 27, 1, 23...

Examples

			Triangle begins:
0;
0,1;
0,1;
0,0,1;
0,1;
0,1,1,1;
0,1;
0,0,0,1;
0,0,1;
0,1,1,1;
0,1;
0,0,1,3,2,1;
0,1;
0,1,1,1;
0,1,1,1;
0,0,0,0,1;
0,1;
0,1,0,3,4,1;
		

Crossrefs

Programs

  • Maple
    A214845 := proc(n,m)
        sort(convert(numtheory[divisors](n),list)) ;
        k := op(m,%) ;
        modp((n/k)^(k-1),k) ;
    end proc:
    for n from 1 to 30 do
        for m from 1 to numtheory[tau](n) do
            printf("%d,",A214845(n,m)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Apr 17 2013

A308366 Expansion of Sum_{k>=1} (-1)^(k+1)*k*x^k/(1 - k*x^k).

Original entry on oeis.org

1, -1, 4, -7, 6, -4, 8, -39, 37, -16, 12, -94, 14, -92, 384, -591, 18, 65, 20, -1542, 2552, -1948, 24, -3606, 3151, -8048, 20440, -30590, 30, 33326, 32, -135455, 178512, -130816, 94968, -35029, 38, -523964, 1596560, -1749734, 42, 2521186, 44, -8374494, 16364502
Offset: 1

Views

Author

Ilya Gutkovskiy, May 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[(-1)^(k + 1) k x^k/(1 - k x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 45; CoefficientList[Series[-Log[Product[(1 - k x^k)^((-1)^(k + 1)/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
    Table[Sum[(-1)^(d + 1) d^(n/d), {d, Divisors[n]}], {n, 1, 45}]

Formula

L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^((-1)^(k+1)/k)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(d+1)*d^(n/d).
a(n) = n + 1 if n is odd prime.

A343982 Numbers k that divide Sum_{j|k} j^(k/j).

Original entry on oeis.org

1, 6, 54, 135, 486, 495, 516, 1134, 1863, 2295, 3375, 4374, 4875, 5535, 10935, 11875, 15435, 19695, 22295, 23625, 24057, 34853, 39015, 39366, 42875, 43875, 59265, 64881, 77625, 84375, 89667, 100875, 102375, 114582, 122625, 142155, 144495, 161325, 165375, 205979, 251505, 268569
Offset: 1

Views

Author

Seiichi Manyama, May 06 2021

Keywords

Examples

			1^6 + 2^3 + 3^2 + 6^1 = 24 = 4 * 6. So 6 is a term.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Divisible[DivisorSum[n, #^(n/#) &], n]; Select[Range[10^5], q] (* Amiram Eldar, May 06 2021 *)
  • PARI
    isok(n) = sumdiv(n, d, Mod(d, n)^(n/d))==0;

A354851 a(n) = (n-1)! * Sum_{d|n} d^(n/d).

Original entry on oeis.org

1, 3, 8, 54, 144, 2880, 5760, 206640, 1491840, 24675840, 43545600, 10298534400, 6706022400, 1195587993600, 33476463820800, 775450900224000, 376610217984000, 553805325545472000, 128047474114560000, 339876410542276608000, 6208765924866785280000
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (n - 1)! * DivisorSum[n, #^(n/#) &]; Array[a, 20] (* Amiram Eldar, Jun 08 2022 *)
  • PARI
    a(n) = (n-1)!*sumdiv(n, d, d^(n/d));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-k*x^k)/k)))

Formula

a(n) = (n-1)! * A055225(n).
E.g.f.: -Sum_{k>0} log(1 - k * x^k)/k.
If p is prime, a(p) = (p-1)! + p!.
Previous Showing 31-40 of 45 results. Next