cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 73 results. Next

A317097 Number of rooted trees with n nodes where the number of distinct branches under each node is <= 2.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 46, 106, 248, 583, 1393, 3343, 8111, 19801, 48719, 120489, 299787, 749258, 1881216, 4741340, 11993672, 30436507, 77471471, 197726053, 505917729, 1297471092, 3334630086, 8587369072, 22155278381, 57259037225, 148222036272, 384272253397
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

There can be more than two branches as long as there are not three distinct branches.

Examples

			The a(5) = 9 trees:
  ((((o))))
  (((oo)))
  ((o(o)))
  ((ooo))
  (o((o)))
  (o(oo))
  ((o)(o))
  (oo(o))
  (oooo)
		

Crossrefs

Programs

  • Mathematica
    semisameQ[u_]:=Length[Union[u]]<=2;
    nms[n_]:=nms[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],semisameQ],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[nms[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, v[n+1]=sum(k=1, n-1, sumdiv(k, d, v[d])*sumdiv(n-k, d, v[d])/2) + sumdiv(n, d, v[n/d]*(1 - (d-1)/2)) ); v} \\ Andrew Howroyd, Aug 28 2018

Extensions

Terms a(20) and beyond from Andrew Howroyd, Aug 28 2018

A317098 Number of series-reduced rooted trees with n unlabeled leaves where the number of distinct branches under each node is <= 2.

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 80, 214, 576, 1595, 4448, 12625, 36146, 104662, 305251, 897417, 2654072, 7895394, 23601441, 70871693, 213660535, 646484951, 1962507610, 5975425743, 18243789556, 55841543003, 171320324878, 526738779846, 1622739134873, 5008518981670
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

There can be more than two branches as long as there are not three distinct branches.

Examples

			The a(5) = 12 trees:
  (o(o(o(oo))))
  (o(o(ooo)))
  (o((oo)(oo)))
  (o(oo(oo)))
  (o(oooo))
  ((oo)(o(oo)))
  ((oo)(ooo))
  (oo(o(oo)))
  (oo(ooo))
  (o(oo)(oo))
  (ooo(oo))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    semisameQ[u_]:=Length[Union[u]]<=2;
    nms[n_]:=nms[n]=If[n==1,{{1}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],semisameQ],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[nms[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n]=sum(k=1, n-1, sumdiv(k, d, v[d])*sumdiv(n-k, d, v[d])/2) + sumdiv(n, d, v[n/d]*(1 - (d-1)/2)) ); v} \\ Andrew Howroyd, Aug 19 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018

A358554 Least Matula-Goebel number of a rooted tree with n internal (non-leaf) nodes.

Original entry on oeis.org

1, 2, 3, 5, 11, 25, 55, 121, 275, 605, 1331, 3025, 6655, 14641, 33275, 73205
Offset: 1

Views

Author

Gus Wiseman, Nov 27 2022

Keywords

Comments

Positions of first appearances in A342507.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
      1: o
      2: (o)
      3: ((o))
      5: (((o)))
     11: ((((o))))
     25: (((o))((o)))
     55: (((o))(((o))))
    121: ((((o)))(((o))))
    275: (((o))((o))(((o))))
    605: (((o))(((o)))(((o))))
   1331: ((((o)))(((o)))(((o))))
   3025: (((o))((o))(((o)))(((o))))
   6655: (((o))(((o)))(((o)))(((o))))
  14641: ((((o)))(((o)))(((o)))(((o))))
  33275: (((o))((o))(((o)))(((o)))(((o))))
  73205: (((o))(((o)))(((o)))(((o)))(((o))))
		

Crossrefs

For height instead of internals we have A007097, firsts of A109082.
For leaves instead of internals we have A151821, firsts of A109129.
Positions of first appearances in A342507.
The ordered version gives firsts of A358553.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seq=Table[Count[MGTree[n],[_],{0,Infinity}],{n,1000}];
    Table[Position[seq,n][[1,1]],{n,Union[seq]}]

A358727 Matula-Goebel numbers of rooted trees with greater number of leaves (width) than node-height.

Original entry on oeis.org

8, 16, 24, 28, 32, 36, 38, 42, 48, 49, 53, 54, 56, 57, 63, 64, 72, 76, 80, 81, 84, 96, 98, 104, 106, 108, 112, 114, 120, 126, 128, 131, 133, 136, 140, 144, 147, 148, 152, 156, 159, 160, 162, 168, 171, 172, 178, 180, 182, 184, 189, 190, 192, 196, 200, 204, 208
Offset: 1

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The terms together with their corresponding rooted trees begin:
   8: (ooo)
  16: (oooo)
  24: (ooo(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  42: (o(o)(oo))
  48: (oooo(o))
  49: ((oo)(oo))
  53: ((oooo))
  54: (o(o)(o)(o))
  56: (ooo(oo))
  57: ((o)(ooo))
  63: ((o)(o)(oo))
  64: (oooooo)
  72: (ooo(o)(o))
  76: (oo(ooo))
		

Crossrefs

Positions of negative terms in A358726.
These trees are counted by A358728.
Differences: A358580, A358724, A358726, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Depth[MGTree[#]]-1
    				

A055280 Number of rooted trees with n nodes and 5 leaves.

Original entry on oeis.org

1, 5, 21, 72, 214, 563, 1344, 2958, 6086, 11820, 21854, 38713, 66069, 109109, 175019, 273540, 417672, 624472, 916038, 1320609, 1873896, 2620552, 3615923, 4927965, 6639493, 8850628, 11681631, 15275970, 19803834, 25465914, 32497699
Offset: 6

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 5 of A055277.

A055281 Number of rooted trees with n nodes and 6 leaves.

Original entry on oeis.org

1, 6, 30, 120, 416, 1268, 3499, 8833, 20730, 45625, 95052, 188638, 358822, 657169, 1163791, 1999495, 3343038, 5452829, 8696613, 13587910, 20834487, 31396728, 46563312, 68041054, 98068941, 139551650, 196226198, 272854810, 375461896
Offset: 7

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 6 of A055277.

A055282 Number of rooted trees with n nodes and 7 leaves.

Original entry on oeis.org

1, 7, 40, 185, 732, 2544, 7949, 22668, 59773, 147228, 341653, 752182, 1580470, 3185224, 6183637, 11606151, 21127675, 37405050, 64561161, 108866382, 179684155, 290762751, 461978659, 721658992, 1109643254, 1681275261
Offset: 8

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 7 of A055277.

A055283 Number of rooted trees with n nodes and 8 leaves.

Original entry on oeis.org

1, 8, 52, 270, 1203, 4682, 16346, 51901, 151945, 414116, 1059945, 2565394, 5907070, 13005279, 27498902, 56052155, 110506991, 211327231, 393002091, 712326630, 1260881177, 2183476067, 3705027759, 6169083918, 10092371963
Offset: 9

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 8 of A055277.

A055284 Number of rooted trees with n nodes and 9 leaves.

Original entry on oeis.org

1, 9, 65, 378, 1867, 8056, 31061, 108692, 349703, 1044990, 2924863, 7722047, 19346165, 46229029, 105831924, 233008811, 495046641, 1017948120, 2031186319, 3942115307, 7457028087, 13774178034, 24885909121, 44043512380
Offset: 10

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 9 of A055277.

A055285 Number of rooted trees with n nodes and 10 leaves.

Original entry on oeis.org

1, 10, 80, 511, 2777, 13138, 55445, 211891, 743088, 2415348, 7339040, 20991721, 56861553, 146612710, 361446211, 855299399, 1949299497, 4291731308, 9152560382, 18951522986, 38182512974, 74995707572, 143850260880
Offset: 11

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 10 of A055277.
Previous Showing 61-70 of 73 results. Next