cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A055295 Number of trees with n nodes and 8 leaves.

Original entry on oeis.org

1, 4, 16, 60, 202, 626, 1787, 4755, 11848, 27881, 62265, 132769, 271431, 534358, 1016390, 1873983, 3358043, 5862811, 9993697, 16664380, 27227873, 43658180, 68789775, 106640700, 162829982, 245127960, 364155076, 534285064, 774774427
Offset: 9

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 8 of A055290.

A055296 Number of trees with n nodes and 9 leaves.

Original entry on oeis.org

1, 4, 20, 83, 318, 1095, 3495, 10292, 28389, 73586, 180663, 421949, 942537, 2021060, 4176507, 8342823, 16157071, 30410396, 55755744, 99773709, 174579270, 299163528, 502804996, 829905792, 1346834873, 2151396469
Offset: 10

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 9 of A055290.

A055297 Number of trees with n nodes and 10 leaves.

Original entry on oeis.org

1, 5, 25, 116, 482, 1834, 6399, 20688, 62355, 176542, 472051, 1198756, 2904166, 6740600, 15042512, 32382969, 67441667, 136233495, 267534126, 511819591, 955658500, 1744487967, 3117961283, 5463991463, 9400016470, 15893600813
Offset: 11

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 10 of A055290.

A055298 Number of trees with n nodes and 11 leaves.

Original entry on oeis.org

1, 5, 30, 151, 698, 2896, 11053, 38865, 127339, 390781, 1131055, 3102493, 8105244, 20247770, 48548878, 112089790, 249930985, 539592972, 1130655414, 2304230739, 4575993619, 8870692319, 16812222795, 31196614962, 56750633235
Offset: 12

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 11 of A055290.

A055299 Number of trees with n nodes and 12 leaves.

Original entry on oeis.org

1, 6, 36, 199, 984, 4433, 18257, 69390, 245105, 810418, 2522646, 7432876, 20825678, 55717629, 142862730, 352212459, 837368658, 1924861589, 4288250970, 9278750495, 19537503288, 40103712085, 80377128541
Offset: 13

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 12 of A055290.

A262395 Difference between the numbers of trees on n vertices with an even number and an odd number of leaves.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 3, 2, 5, 5, 13, 13, 29, 32, 71, 81, 177, 209, 449, 538, 1148, 1415, 3002, 3736, 7862, 9930, 20877, 26648, 55756, 71767, 149860, 194507, 405332, 529708, 1101502, 1447956, 3006750, 3974959, 8242691, 10948355, 22673357, 30249668, 62583402, 83831176, 173259448, 232917913, 480970826, 648753720
Offset: 2

Views

Author

Max Alekseyev, Sep 21 2015

Keywords

Comments

The sequence could be prepended with a(0)=1 and a(1)=-1. However, it is conjectured that for all n>=2, we have a(n)>=0 (cf. MathOverflow link).

Crossrefs

Formula

a(n) = A262430(n) - A262431(n).
G.f.: x + A(x,-1), where A(x,y) is g.f. for A055290.

A262430 Number of trees on n vertices with an even number of leaves.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 6, 12, 25, 54, 120, 278, 657, 1586, 3885, 9676, 24350, 61974, 159066, 411637, 1072477, 2812147, 7414611, 19650656, 52319946, 139898593, 375536661, 1011726481, 2734793731, 7415449225, 20165442393, 54986240994, 150314506170, 411889913114, 1131183374539, 3113153283443, 8584839296108, 23718157486109, 65645273392938, 181995130879151, 505374042479921, 1405493247220915, 3914493122094481, 10917513971606377, 30489195524251154, 85254349619909519, 238677545463592954, 668973050139380099, 1877097093098685409, 5272616851780131627
Offset: 0

Views

Author

Max Alekseyev, Sep 22 2015

Keywords

Comments

For n>=0, a(n) + A262431(n) = A000055(n).
For n>=2, a(n) - A262431(n) = A262395(n).

Crossrefs

Formula

G.f.: (A(x,1)+A(x,-1))/2, where A(x,y) is g.f. for A055290.

A262431 Number of trees on n vertices with an odd number of leaves.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 3, 5, 11, 22, 52, 115, 273, 644, 1573, 3856, 9644, 24279, 61893, 158889, 411428, 1072028, 2811609, 7413463, 19649241, 52316944, 139894857, 375528799, 1011716551, 2734772854, 7415422577, 20165386637, 54986169227, 150314356310, 411889718607, 1131182969207, 3113152753735, 8584838194606, 23718156038153, 65645270386188, 181995126904192, 505374034237230, 1405493236272560, 3914493099421124, 10917513941356709, 30489195461667752, 85254349536078343, 238677545290333506, 668973049906462186, 1877097092617714583, 5272616851131377907
Offset: 0

Views

Author

Max Alekseyev, Sep 22 2015

Keywords

Comments

For n>=0, A262430(n) + a(n) = A000055(n).
For n>=2, A262430(n) - a(n) = A262395(n).

Crossrefs

Formula

G.f.: (A(x,1)-A(x,-1))/2, where A(x,y) is g.f. for A055290.

A303840 Unlabeled trees with n nodes rooted at 2 indistinguishable roots that are leaves.

Original entry on oeis.org

0, 1, 1, 2, 4, 10, 24, 63, 164, 444, 1204, 3328, 9233, 25865, 72734, 205656, 583320, 1660318, 4737540, 13551165, 38837535, 111512229, 320681604, 923528963, 2663057582, 7688068638, 22218350303, 64272720521, 186091334380, 539237928902, 1563731491958, 4537823968645, 13176960639940, 38286514506439, 111306880581963
Offset: 1

Views

Author

R. J. Mathar, May 01 2018

Keywords

Examples

			a(2)=a(3)=1, because the two roots must be (all) the leaves. a(4)=2 (one pattern from the linear tree, one from the star tree). a(6)=10: 1 pattern from n-Hexane. 2 patterns from 2-Methyl-Pentane. 2 patterns from (2,3)-Bimethyl-Butane. 1 pattern from the star graph. 2 patterns from 3-Methyl-Pentane. 2 patterns from (2,2)-Bimethyl-Butane.
		

Crossrefs

Cf. A303833 (roots need not be leaves), A055290 (cardinality of candidates).

Programs

  • Maple
    a000081 := [1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228,
    35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597,
    997171512998, 2809934352700, 7929819784355, 22409533673568, 63411730258053, 179655930440464, 509588049810620, 1447023384581029,
    4113254119923150, 11703780079612453, 33333125878283632] ;
    g81 := add( op(i,a000081)*x^i,i=1..nops(a000081) ) ;
    g81fin := x ;
    g := 0 ;
    nmax := nops(a000081) ;
    for m from 0 to nmax do
        mhalf := floor(m/2) ;
        ghalf := g81^mhalf*g81fin ;
        gcyc := (ghalf^2+subs(x=x^2,ghalf))/2 ;
        if type(m,odd) then
            gcyc := gcyc*g81 ;
        end if;
        g := g+gcyc ;
    end do:
    taylor(g,x=0,nmax) ;
    gfun[seriestolist](%) ;

A304222 Triangle T(n,k) read by rows: number of simple connected graphs with n nodes and k endpoints, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 3, 1, 1, 1, 0, 11, 5, 3, 1, 1, 0, 61, 29, 14, 5, 2, 1, 0, 507, 224, 86, 25, 8, 2, 1, 0, 7442, 2666, 762, 184, 48, 11, 3, 1, 0, 197772, 50779, 10173, 1890, 374, 72, 16, 3, 1, 0, 9808209, 1653431, 220627, 29252, 4252, 660, 115, 20, 4, 1, 0
Offset: 0

Views

Author

R. J. Mathar, May 11 2018

Keywords

Comments

Endpoints are vertices with 0 or 1 (less than 2) edges.

Examples

			The triangle starts in row n=0 with column 0 <= k <= n as:
       1;
       1,     0;
       0,     0,     1;
       1,     0,     1,    0;
       3,     1,     1,    1,   0;
      11,     5,     3,    1,   1,  0;
      61,    29,    14,    5,   2,  1,  0;
     507,   224,    86,   25,   8,  2,  1, 0;
    7442,  2666,   762,  184,  48, 11,  3, 1, 0;
  197772, 50779, 10173, 1890, 374, 72, 16, 3, 1, 0;
		

Crossrefs

Cf. A001349 (row sums), A004108 (first column), A055290 (trees only), A327371.

Programs

  • PARI
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i) )}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)}
    T(n)={my(v=InvEulerMT(Vec(G(n)-1))); v[2]=y^2; concat([[1]], vector(#v, n, Vecrev(v[n], n+1))) }
    my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 22 2021

Extensions

Terms a(55) and beyond from Andrew Howroyd, Jan 22 2021
Previous Showing 11-20 of 20 results.