A336966
Primes starting 10-tuples of consecutive primes that have symmetrical gaps about their mean and form 5 pairs of twin primes.
Original entry on oeis.org
3031329797, 5188151387, 14168924459, 14768184029, 18028534367, 26697800819, 26919220961, 29205326387, 32544026699, 39713433671, 45898528799, 48263504459, 50791655009, 66419473031, 71525244611, 80179195037, 83700877199, 86767580069, 97660776137, 108116163479
Offset: 1
a(1) = A274792(5) = 3031329797 starts a 10-tuple of consecutive primes: 3031329797+s for s in {0, 2, 12, 14, 42, 44, 72, 74, 84, 86} that are symmetric about 3031329797+43 and form 5 pairs of twin primes.
A333977
Prime starting a sequence of 20 consecutive primes with symmetrical gaps about the center.
Original entry on oeis.org
1797595814863, 2375065608481, 4465545586753, 21818228348093, 67696772430071, 82116093014611, 155947272322087, 161980267642951, 169560139541641, 202619277419161, 285719200081877, 299828814652799, 314942862282899, 365706921997577
Offset: 1
Cf.
A000040,
A055381,
A055382,
A064101,
A081235,
A175309,
A335044,
A335394,
A336967,
A336968,
A359440.
A263171
Smallest prime starting a sequence of 4 consecutive odd primes such that the center of the symmetrical gaps is 2n.
Original entry on oeis.org
7, 5, 251, 353, 137, 2393, 109, 1931, 1753, 883, 3733, 7351, 12007, 2969, 8887, 27697, 1321, 22811, 38377, 62987, 183823, 15679, 124001, 180563, 45887, 48677, 100847, 178693, 152993, 557087, 34057, 367949, 294551, 134507, 173357, 1802407, 531359, 1134311, 933067
Offset: 1
a(2)=5 because the 4 consecutive primes 5, 7, 11, 13 have gaps 2, 4, 2, which is symmetric about its center 4 = 2*2.
-
with(numtheory):nn:=500000:l:=2:T:=array(1..2*l-1)):
for n from 1 to 35 do:ii:=0:
for k from 1 to nn while(ii=0) do:
lst:={}:lst1:={}:
for m from 1 to 2*l do:
lst:=lst union {ithprime(k+m-1)}
od:
for p from 1 to 2*l do:
lst1:=lst1 union {lst[p]+lst[2*l-p+1]}
od:
n0:=nops(lst1):
if n0=1
then
for a from 1 to 2*l-1 do:
T[a]:=lst[a+1]-lst[a]:
od:
if T[2]=2*n then ii:=1:printf(`%d, `,lst[1]):
else fi :fi:
od :
od:
-
a(n) = {pa = 3; pb = 5; pc = 7; forprime(p=8, , if (((pc-pb) == 2*n) && ((pb-pa) == (p-pc)), return(pa)); pa = pb; pb = pc; pc = p;);} \\ Michel Marcus, Oct 16 2015
A267028
P(n,k) is an array read by rows, with n > 0 and k=1..5, where row n gives the chain of 5 consecutive primes {p(i), p(i+1), p(i+2), p(i+3), p(i+4)} having the symmetrical property p(i) + p(i+4) = p(i+1) + p(i+3) = 2*p(i+2) for some index i.
Original entry on oeis.org
18713, 18719, 18731, 18743, 18749, 25603, 25609, 25621, 25633, 25639, 28051, 28057, 28069, 28081, 28087, 30029, 30047, 30059, 30071, 30089, 31033, 31039, 31051, 31063, 31069, 44711, 44729, 44741, 44753, 44771, 76883, 76907, 76913, 76919, 76943
Offset: 1
The first row is [18713, 18719, 18731, 18743, 18749] because 18713 + 18749 = 18719 + 18743 = 2*18731 = 37462.
The array starts with:
[18713, 18719, 18731, 18743, 18749]
[25603, 25609, 25621, 25633, 25639]
[28051, 28057, 28069, 28081, 28087]
...
-
U:=array(1..50,1..5):W:=array(1..2):kk:=0:
for n from 4 to 10000 do:
for m from 2 by -1 to 1 do:
q:=ithprime(n-m)+ithprime(n+m):W[m]:=q:
od:
if W[1]=W[2] and W[1]=2*ithprime(n) then
kk:=kk+1:U[kk,1]:=ithprime(n-2):
U[kk,2]:=ithprime(n-1):U[kk,3]:=ithprime(n):
U[kk,4]:=ithprime(n+1):U[kk,5]:=ithprime(n+2):
else fi:od:print(U):
for i from 1 to kk do:
for j from i+1 to kk do:
s1:=U[i,1]+U[j,5]:
s2:=U[i,2]+U[j,4]:
s3:=U[i,3]+U[j,3]:
s4:=U[i,4]+U[j,2]:
s5:=U[i,5]+U[j,1]:
if s1=s2 and s2=s3 and s3=s4 and s4=s5
then
printf("%d %d \n",i,j):
else fi:
od:
od:
Comments