A005019 The number of n X n (0,1)-matrices with a 1-width of 1.
1, 7, 169, 14911, 4925281, 6195974527, 30074093255809, 568640725896660991, 42170765737391337500161, 12325140160135610565932361727, 14244006984657003076298588475598849
Offset: 1
Keywords
Examples
a(2)=7 because there are seven ways to order two subsets of {1,2} so that the intersection of the subsets contains at least one element: {1}{1};{1}{1,2};{2}{2};{2}{1,2};{1,2}{1};{1,2}{2};{1,2}{1,2}. - _Geoffrey Critzer_, Mar 01 2009
References
- Lam, Clement W. H., The distribution of 1-widths of (0, 1)-matrices. Discrete Math. 20 (1977/78), no. 2, 109-122.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stanley, Enumerative Combinatorics, Volume I, Example 1.1.16 [From Geoffrey Critzer, Dec 03 2009]
Crossrefs
a(n) = 2^(n^2)- A055601. - Geoffrey Critzer, Dec 03 2009
Cf. A005020 (1-width of 2).
Programs
-
Mathematica
Table[2^(n^2) - (2^n - 1)^n, {n, 1, 15}] (* Geoffrey Critzer, Dec 03 2009 *)
Formula
a(n) = 2^(n^2) - ((2^n)-1)^n. - Geoffrey Critzer, Mar 01 2009
Extensions
a(7) from Geoffrey Critzer, Mar 01 2009
More terms from Geoffrey Critzer, Dec 03 2009
Title improved by Sean A. Irvine, Mar 06 2020
Comments