cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A145991 Final prime in a run of more than 1 consecutive primes == 1 (mod 4).

Original entry on oeis.org

17, 41, 101, 113, 197, 233, 281, 317, 353, 409, 461, 521, 617, 677, 709, 773, 809, 857, 881, 941, 1013, 1097, 1117, 1217, 1249, 1301, 1381, 1433, 1493, 1553, 1601, 1613, 1657, 1697, 1721, 1741, 1801, 1877, 1901, 1949, 1997, 2081, 2129, 2141, 2161, 2237
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Examples

			a(1)=17 because this sequence includes consecutive runs of any length and this ending term > 1 in a run of 2 (comprising 13 and 17) is 17.
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Programs

  • UBASIC
    10 'cluster primes
    20 C=1
    30 input "end #";L
    40 for N=3 to L step 2
    50 S=int(sqrt(N))
    60 for A=3 to S step 2
    70 B=N/A
    80 if int(B)*A=N then cancel for:goto 170
    90 next A
    100 C=C+1
    110 E=N/4:E=int(E):R=N-(4*E)
    120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1
    130 if R=3 then T1=0
    140 if R=3 then print " ";N;:C3=C3+1:T2=T2+1:print T2
    150 if R=1 then T2=0
    160 if T1>10 or T2>10 then stop
    170 next
    180 print "Total primes=";C;:print "Type A";C1;"Type B";C3

A145992 Run lengths of 2 or more consecutive primes of the form 4k+3.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 7, 2, 2, 2, 2, 3, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 5, 5, 2, 2, 4, 2, 2, 3, 2, 2, 3, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 3, 2, 3, 4, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Examples

			a(1) = 2 counts the two 3's from A039702(4) to A039702(5).
a(9) = 4 counts the four 3's from A039702(46) to A039702(49).
a(14)= 7 counts the seven 4's from A039702(90) to A039702(96).
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Programs

  • Maple
    A145992 := proc()
        local m,p,r,i ;
        m := 3 ;
        p := 2 ;
        r := 0 ;
        for i from 2 to 1000 do
            if modp(p,4) = m then
                r := r+1 ;
            else
                if r > 1 then
                    printf("%d,",r) ;
                end if;
                r := 0;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    A145992() ; # R. J. Mathar, Aug 29 2018
  • Mathematica
    Most[Length /@ Select[ SplitBy[ Prime@ Range@ 780, Mod[#, 4] &], Mod[#[[1]], 4] == 3 && Length[#] > 1 &]] (* Giovanni Resta, Aug 29 2018 *)
    Length/@Select[Split[Table[If[Mod[n,4]==3,1,0],{n,Prime[Range[ 1000]]}]], FreeQ[ #,0]&]/.(1->Nothing) (* Harvey P. Dale, Jul 27 2020 *)

Extensions

Corrected by R. J. Mathar, Aug 29 2018

A145993 Primes that start a run of at least 2 consecutive primes of the form 4k+3.

Original entry on oeis.org

7, 19, 43, 67, 79, 103, 127, 163, 199, 307, 359, 379, 439, 463, 619, 643, 683, 719, 739, 823, 859, 883, 967, 983, 1087, 1163, 1279, 1303, 1423, 1439, 1459, 1483, 1499, 1559, 1663, 1783, 1811, 1867, 1979, 1999, 2083, 2099, 2179, 2239, 2347, 2399, 2447, 2531, 2579, 2659, 2683, 2699, 2803, 2843, 2879
Offset: 1

Views

Author

Enoch Haga, Oct 26 2008

Keywords

Examples

			a(1)=7 because this sequence includes consecutive runs of any length and this first term >1 in a run of 2 is 7.
		

References

  • Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6

Crossrefs

Programs

  • Maple
    A145993 := proc()
        local m,p,r,i,sp ;
        m := 3 ;
        p := 2 ;
        r := 0 ;
        sp := -1 ;
        for i from 2 to 1000 do
            if modp(p,4) = m then
                r := r+1 ;
                if r = 1 then
                    sp := p ;
                end if;
            else
                if r > 1 then
                    printf("%d,",sp) ;
                end if;
                r := 0;
                sp := -1 ;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    A145993() ; # R. J. Mathar, Aug 29 2018
  • Mathematica
    Most[First /@ Select[ SplitBy[ Prime@ Range@ 425, Mod[#, 4] &], Mod[#[[1]], 4] == 3 && Length[#] > 1 &]] (* Giovanni Resta, Aug 29 2018 *)

Extensions

619 inserted by R. J. Mathar, Aug 29 2018

A162865 Initial prime of exactly nine consecutive primes congruent to 1 modulo 4.

Original entry on oeis.org

11593, 206953, 315257, 541097, 906541, 992393, 1124993, 1410361, 1595081, 1781569, 1872049, 2043329, 2090353, 2312749, 2381657, 2481509, 2497289, 2718389, 2758109, 2772409, 2976397, 3863473, 3868849, 4027957, 4042673, 4375141, 4464841, 4547581, 4606153
Offset: 1

Views

Author

Rick L. Shepherd, Jul 15 2009

Keywords

Comments

The table provides all 8919 [=A092660(9)] terms less than 10^9.
If 10 or more consecutive primes are all congruent to 1 modulo 4, none of them is a member of this sequence. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    m9Q[l_]:=Module[{ms=Mod[l,4]},First[ms]!=1&&Last[ms]!=1&&Union[Take[ ms,{2,10}]]=={1}]; Transpose[Select[Partition[ Prime[Range[ 290000]], 11,1],m9Q]][[2]] (* Harvey P. Dale, Oct 23 2011 *)

A330360 First occurrence of run of lucky numbers congruent to 1 mod 4 of exactly length n.

Original entry on oeis.org

1, 9, 285, 933, 741, 11173, 15109, 33705, 100737, 24025, 34197, 86829, 5370693, 6457761, 2287341, 26529033, 53099457, 770289, 754577025, 256655365, 765951429, 2618761237, 1075872265, 2405972445, 2767592133
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2019

Keywords

Comments

Calculated using Hugo van der Sanden's Lucky numbers up to 10^9 (private communication).
a(20) = 256655365.
a(26) > 4*10^9. - Giovanni Resta, May 10 2020

Examples

			a(1) = 1 since 1 is the first lucky number congruent to 1 mod 4, and the next lucky number is 3 which is not congruent to 1 mod 4.
a(2) = 9 since 9 and 13 are 2 consecutive lucky numbers congruent to 1 mod 4, following 7 and followed by 15 which are both not congruent to 1 mod 4.
		

Crossrefs

Extensions

a(19)-a(25) from Giovanni Resta, May 10 2020

A035525 24 consecutive primes of form 4k+1.

Original entry on oeis.org

1113443017, 1113443029, 1113443053, 1113443069, 1113443077, 1113443137, 1113443141, 1113443153, 1113443173, 1113443189, 1113443209, 1113443249, 1113443269, 1113443293, 1113443329, 1113443341, 1113443369, 1113443381, 1113443389, 1113443473, 1113443521, 1113443533, 1113443549, 1113443561
Offset: 1

Views

Author

Keywords

Comments

This is the earliest sequence of this form (L=24).

References

  • See Section A4. p. 13 "Unsolved problems in Number Theory", 2nd. Ed., R. K. Guy

Crossrefs

Extensions

More terms from Sean A. Irvine, Oct 15 2020

A226905 First in a sequence of 9 consecutive primes all of the form 4n+1.

Original entry on oeis.org

11593, 206953, 315257, 373649, 373657, 495377, 495389, 509389, 509393, 541097, 612109, 612113, 766261, 766273, 766277, 789097, 789101, 906541, 992393, 1124993, 1330229, 1330237, 1410361, 1531633, 1531657, 1531661, 1578133, 1578169, 1595081, 1694897, 1694909
Offset: 1

Views

Author

Harvey P. Dale, Jun 21 2013

Keywords

Examples

			206953, 206993, 207013, 207017, 207029, 207037, 207041, 207061, and 207073 are 9 consecutive primes, each equal to 1 mod 4.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 163 (entry for 11593).

Crossrefs

Cf. A055623 (first occurrence of run of primes congruent to 1 mod 4 of exactly length n).

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[180000]],9,1],Union[Mod[#,4]] == {1}&]][[1]]
Previous Showing 11-17 of 17 results.