A024311
Catacondensed simply-connected monopentapolyhexes.
Original entry on oeis.org
0, 0, 1, 7, 30, 132, 559, 2416, 10483, 46072, 204155, 912779, 4110644, 18636572, 84985825, 389586145, 1794268460, 8298524480, 38527095859, 179487051589, 838820171722, 3931498431052, 18475618863389, 87036535974062, 410947146076475
Offset: 1
A376277
The least increasing sequence starting with 1, such that the determinants of the Hankel matrices H1 = [a(0), a(1), ..., a(n); ...; a(n), a(n+1), ..., a(2*n)] and H2 = [a(1), a(2), ..., a(n+1); ...; a(n+1), a(n+2), ..., a(2*n+1)] are > 0.
Original entry on oeis.org
1, 2, 5, 13, 35, 98, 287, 883, 2858, 9708, 34411, 126337, 476767, 1836851, 7185420, 28420613, 113317776, 454468077, 1830556209, 7397188271, 29965426959, 121620119888, 494365414071, 2011965781648, 8196475452837, 33419092543257, 136353532725534, 556669705441210
Offset: 0
Cf.
A000108 (We obtain the Catalan numbers if we use "least positive sequence" in the definition instead of "least increasing").
-
hankelok(s) = {my(m1=floor((#s+1)/2)); my(m2=floor(#s/2)); my(h1=matrix(m1,m1,x,y,s[x+y-1])); my(h2=matrix(m2,m2,x,y,s[x+y])); return((matdet(h1) > 0) && (matdet(h2) > 0))}
a(max_n) = {my(s=[1,2],k=3); while(#s < max_n, while(hankelok(concat(s,[k]))==0,k=k+1); s=concat(s,[k])); return(s)}
-
my(N=30, x='x+O('x^N)); Vec(1/(1-2*x/(1-(1/2)*x/(1-(1/2)*x/(1-2*x/(1-((1-sqrt(1-4*x))/(2*x))*x))))))
-
a(n) = if(n<3, [1, 2, 5][n+1], sum(k=1, floor((n+1)/2), (binomial(n-k+1, k)+binomial(n-k, k-1)-binomial(n-k-3, k-4))*(-1)^(k+1)*a(n-k)))
A044044
Catafusenes (see reference for precise definition).
Original entry on oeis.org
0, 1, 2, 2, 6, 10, 19, 36, 72, 135, 274, 543, 1084, 2219, 4438, 9280, 18570, 39587, 79169, 171369, 342738, 751221, 1502472, 3328218, 6656421, 14878455, 29756910, 67030734, 134061570, 304036170, 608072289, 1387247580, 2774495160
Offset: 0
- S. J. Cyvin et al., Enumeration and classification of certain polygonal systems...: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
A044049
Catafusenes (see reference for precise definition).
Original entry on oeis.org
0, 0, 1, 7, 31, 139, 609, 2677, 11827, 52648, 236071, 1065774, 4841428, 22115678, 101531221, 468224323, 2168076055, 10076177264, 46986612235, 219777649588, 1030892581741, 4848039893338, 22853638285655, 107970202258065
Offset: 0
Comments