cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A271562 a(n) = G_n(17), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

17, 7625597484987, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084095
Offset: 0

Views

Author

Natan Arie Consigli, Apr 13 2016

Keywords

Examples

			G_1(17) = B_2(17)-1 = B_2(2^2^2+1)-1 = 3^3^3+1-1 = 7625597484987;
G_2(17) = B_3(3^3^3)-1 = 4^4^4-1 has 155 digits;
G_3(17) has 328 digits.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A271561: G_n(14), A266201: G_n(n).

A271989 g_n(8) where g is the weak Goodstein function defined in A266202.

Original entry on oeis.org

8, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, 401, 458, 519, 584, 653, 726, 803, 884, 969, 1058, 1151, 1222, 1295, 1370, 1447, 1526, 1607, 1690, 1775, 1862, 1951, 2042, 2135, 2230, 2327, 2426, 2527, 2630, 2735, 2842, 2951, 3062, 3175, 3290, 3407, 3525, 3645, 3767, 3891, 4017, 4145, 4275, 4407, 4541
Offset: 0

Views

Author

Natan Arie Consigli, May 22 2016

Keywords

Comments

For more info see A266201-A266202.

Examples

			g_1(8) = b_2(8)-1 = b_2(2^3)-1 = 3^3-1 = 26;
g_2(8) = b_3(2*3^2+2*3+2)-1 = 2*4^2+2*4+2-1 = 41;
g_3(8) = b_4(2*4^2+2*4+1)-1 = 2*5^2+2*5+1-1 = 60;
g_4(8) = b_5(2*5^2+2*5)-1 = 2*6^2+2*6-1 = 83;
g_5(8) = b_6(2*6^2+6+5)-1 = 2*7^2+7+5-1 = 109;
g_6(8) = b_7(2*7^2+7+4)-1 = 2*8^2+8+4-1 = 139;
g_7(8) = b_8(2*8^2+8+3)-1 = 2*9^2+9+3-1 = 173;
g_8(8) = b_9(2*9^2+9+2)-1 = 2*10^2+10+2-1 = 211;
g_9(8) = b_10(2*10^2+10+1)-1 = 2*11^2+11+1-1 = 253;
g_10(8) = b_11(2*11^2+11)-1 = 2*12^2+12-1 = 299.
		

Crossrefs

Essentially the same as A056193.
Cf. G_n(8): A271555.
Weak Goodstein sequences: A137411: g_n(11); A265034: g_n(266); A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A271988: g_n(7); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Programs

  • Mathematica
    g[k_, n_] := If[k == 0, n, Total@ Flatten@ MapIndexed[#1 (k + 2)^(#2 - 1) &, Reverse@ IntegerDigits[#, k + 1]] &@ g[k - 1, n] - 1]; Table[g[n, 8], {n, 0, 55}]

A271975 a(n) = G_n(18), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

18, 7625597484989, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097
Offset: 0

Views

Author

Natan Arie Consigli, Apr 24 2016

Keywords

Examples

			G_1(18) = B_2(18)-1 = B_2(2^2^2+2)-1 = 3^3^3+3-1 = 7625597484989;
G_2(18) = B_3(3^3^3+2)-1 = 4^4^4+2-1 has 154 digits;
G_3(18) = B_4(4^4^4+1)-1 = 5^5^5 has 2184 digits;
G_4(18) = B_5(5^5^5)-1 = 6^6^6-1 = has 36305 digits.
		

Crossrefs

Cf. A215409: G_n(3), A056193: G_n(4), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A271561: G_n(14), A222117: G_n(15), A059933: G_n(16), A271562: G_n(17), A211378: G_n(19), A266201: G_n(n).

A300404 Smallest integer k such that the largest term in the Goodstein sequence starting at k is > n.

Original entry on oeis.org

2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Felix Fröhlich, Mar 05 2018

Keywords

Comments

The sequence apparently grows very slowly.
Is the sequence unbounded?

Crossrefs

Programs

  • PARI
    \\ define the function bump() as in A059933
    a(n) = my(k=1, x=k, step=2); while(1, x=bump(x, step)-1; step++; if(x > n, return(k)); if(x==0, k++; x=k; step=2))

A271976 a(n) = G_n(20), where G is the Goodstein function defined in A266201.

Original entry on oeis.org

20, 7625597485013, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084137
Offset: 0

Views

Author

Natan Arie Consigli, Apr 24 2016

Keywords

Examples

			G_1(20) = B_2(20)-1 = B_2(2^2^2+2^2)-1 = 3^3^3+3^3-1 = 7625597485013;
G_2(20) = B_3(3^3^3+2*3^2+2*3+2)-1 = 4^4^4+2*4^2+2*4+2-1  has 154 digits;
G_3(20) = B_4(4^4^4+2*4^2+2*4+1)-1 = 5^5^5+2*5^2+2*5+1-1 has 2184 digits.
		

Crossrefs

Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A271561: G_n(14), A271562: G_n(17), A271975: G_n(18), A266201: G_n(n).

A296441 Array A(n, k) = G_k(n) where G_k(n) is the k-th term of the Goodstein sequence of n, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 2, 3, 0, 0, 1, 3, 4, 0, 0, 0, 3, 26, 5, 0, 0, 0, 2, 41, 27, 6, 0, 0, 0, 1, 60, 255, 29, 7, 0, 0, 0, 0, 83, 467, 257, 30, 8, 0, 0, 0, 0, 109, 775, 3125, 259, 80, 9, 0, 0, 0, 0, 139, 1197, 46655, 3127, 553, 81, 10, 0, 0, 0, 0, 173, 1751, 98039, 46657, 6310, 1023, 83, 11
Offset: 0

Views

Author

Iain Fox, Dec 12 2017

Keywords

Comments

G_0(n) = n. To get to the second term in the row, convert n to hereditary base 2 representation (see links), replace each 2 with a 3, and subtract 1. For the third term, convert the second term (G_1(n)) into hereditary base 3 notation, replace each 3 with a 4, and subtract one. This pattern continues until the sequence converges to 0, which, by Goodstein's Theorem, occurs for all n.

Examples

			| n\k |  0   1    2     3      4      5       6       7       8       9  ...
|-----|------------------------------------------------------------------------
|  0  |  0,  0,   0,    0,     0,     0,      0,      0,      0,      0, ...
|  1  |  1,  0,   0,    0,     0,     0,      0,      0,      0,      0, ...
|  2  |  2,  2,   1,    0,     0,     0,      0,      0,      0,      0, ...
|  3  |  3,  3,   3,    2,     1,     0,      0,      0,      0,      0, ...
|  4  |  4, 26,  41,   60,    83,   109,    139,    173,    211,    253, ...
|  5  |  5, 27, 255,  467,   775,  1197,   1751,   2454,   3325,   4382, ...
|  6  |  6, 29, 257, 3125, 46655, 98039, 187243, 332147, 555551, 885775, ...
| ... |
		

Crossrefs

n-th row: A000004 (n=0), A000007 (n=1), A215409 (n=3), A056193 (n=4), A266204 (n=5), A266205 (n=6), A271554 (n=7), A271555 (n=8), A271556 (n=9), A271557 (n=10), A271558 (n=11), A271559 (n=12), A271560 (n=13), A271561 (n=14), A222117 (n=15), A059933 (n=16), A271562 (n=17), A271975 (n=18) A211378 (n=19), A271976 (n=20).
k-th column: A001477 (k=0), A056004 (k=1), A057650 (k=2), A059934 (k=3), A059935 (k=4), A059936 (k=5), A271977 (k=6), A271978 (k=7), A271979 (k=8), A271985 (k=9), A271986 (k=10).
G_n(n) = A266201(n) (main diagonal of array).

Programs

  • PARI
    B(n, b)=sum(i=1, #n=digits(n, b), n[i]*(b+1)^if(#n
    				

A372237 a(0) = 4; to obtain a(k), write out the base-(2^k) expansion of a(k-1), bump to base 2^(k+1), then subtract 1.

Original entry on oeis.org

4, 15, 26, 49, 96, 191, 318, 573, 1084, 2107, 4154, 8249, 16440, 32823, 65590, 131125, 262196, 524339, 1048626, 2097201, 4194352, 8388655, 16777262, 33554477, 67108908, 134217771, 268435498, 536870953, 1073741864, 2147483687, 4294967334, 8589934629, 17179869220
Offset: 0

Views

Author

Jianing Song, Apr 23 2024

Keywords

Comments

Applying to the proof of the usual Goodstein's theorem to the ordinal number omega^omega shows that: for no matter what initial value and no matter what increasing sequence of bases b(0), b(1), ... with b(0) >= 2, the (weak) Goodstein sequence eventually terminates with 0. Here b(k) = 2^(k+1).
Sequence terminates at a(2^(2^70+70) + 2^70 + 68) = 0.

Examples

			a(0) = 100_2 = 4;
a(1) = 100_4 - 1 = 15 = 33_4;
a(2) = 33_8 - 1 = 26 = 32_8;
a(3) = 32_16 - 1 = 49 = 31_16;
a(4) = 31_32 - 1 = 96 = 30_32;
a(5) = 30_64 - 1 = 191 = (2,63)_64.
		

Crossrefs

Programs

  • PARI
    A372237_first_N_terms(N) = my(v=vector(N+1)); v[1] = 4; for(i=1, N, v[i+1] = fromdigits(digits(v[i],2^i),2^(i+1))-1); v

Formula

a(k) = 2^(k+2) + 68 - k for 5 <= k <= 68. The base-(2^(k+1)) expansion of a(k) consists of two digits 2 and 68 - k.
a(k) = 2^(k+1) + 2^70 + 68 - k for 69 <= 2^70 + 68. The base-(2^(k+1)) expansion of a(k) consists of two digits 1 and 2^70 + 68 - k.
a(k) = 2^(2^70+70) + 2^70 + 68 - k for 2^70 + 69 <= k <= 2^(2^70+70) + 2^70 + 68. The base-(2^(k+1)) expansion of a(k) consists of a single digit 2^(2^70+70) + 2^70 + 68 - k.
Previous Showing 21-27 of 27 results.