cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A165152 a(n) = (3*12^n - 8^n)/2.

Original entry on oeis.org

1, 14, 184, 2336, 29056, 356864, 4347904, 52699136, 636583936, 7672561664, 92339175424, 1110217588736, 13339790934016, 160214930161664, 1923678673567744, 23092940175835136, 277185650854199296, 3326790760203812864, 39925992722073124864, 479147941461896462336
Offset: 0

Views

Author

Klaus Brockhaus, Sep 15 2009

Keywords

Comments

Binomial transform of A165151. Sixth binomial transform of A016129. Tenth binomial transform of A056450.

Crossrefs

Programs

Formula

a(n) = 20*a(n-1) - 96*a(n-2) for n > 1; a(0) = 1, a(1) = 14.
G.f.: (1 - 6*x)/((1 - 8*x)*(1 - 12*x)).
E.g.f.: exp(8*x)*(3*exp(4*x) - 1)/2. - Stefano Spezia, Mar 30 2023

A001446 a(n) = (4^n + 4^[ n/2 ] )/2.

Original entry on oeis.org

10, 34, 136, 520, 2080, 8224, 32896, 131200, 524800, 2097664, 8390656, 33556480, 134225920, 536879104, 2147516416, 8589967360, 34359869440, 137439084544, 549756338176, 2199023779840, 8796095119360
Offset: 2

Views

Author

Keywords

Crossrefs

Equals 2^(2[n/2]-1) * (A056450(n)+1). Cf. A001445.

Formula

G.f.: x^2*(10-6x-40x^2)/((1-4x)*(1-4x^2)).
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) for n > 4. - Chai Wah Wu, Sep 10 2020

A251861 Number of non-palindromic words (length n>0) over the alphabet of 26 letters.

Original entry on oeis.org

0, 650, 16900, 456300, 11863800, 308898200, 8031353200, 208826607600, 5429491797600, 141167083772000, 3670344178072000, 95428956352766400, 2481152865171926400, 64509974695265340800, 1677259342076898860800, 43608742899220046995200, 1133827315379721221875200, 29479510200008489360729600, 766467265200220723378969600, 19928148895209267985244544000
Offset: 1

Views

Author

Mikk Heidemaa, Dec 10 2014

Keywords

Comments

Example: the acronyms 'OEIS' and 'SIEO' are two distinct non-palindromic words of length 4 among all possible such 456300 words (over 26 letters of the Latin alphabet).

Examples

			For n=2, the a(2)=650 solutions are {ab,ac,...,az,...,yz}, but not, e.g., 'aa' or 'zz'.
		

Crossrefs

Analogs for other numbers of elements: (1) A000004, (2) A233411, (3) A242278, (4) A242026, (5) A240437.
Cf. A056450.

Programs

  • Maple
    seq(26^n - 26^ceil(n/2), n = 1 .. 50); # Robert Israel, Dec 11 2014
  • Mathematica
    f[n_, b_] := b^n - b^Ceiling[n/2]; Array[ f[#, 26] &, 50] (* Robert G. Wilson v, Dec 10 2014 *)
    Table[2^(n/2-1)*13^(n/2)*((-1)^n*(Sqrt[26]-1)-Sqrt[26]-1)+26^n, {n, 50}]
  • PARI
    a(n)=26^n-26^ceil(n/2) \\ Charles R Greathouse IV, Dec 10 2014

Formula

a(n) = 2^(n/2-1)*13^(n/2)*((-1)^n*(sqrt(26)-1)-sqrt(26)-1)+26^n.
a(n) = 26^n - 26^ceiling(n/2).
G.f.: 650*x^2/((1 - 26*x)*(1 - 26*x^2)).
a(n+3) = 26*a(n+2) + 26*a(n+1) - 676*a(n). - Robert Israel, Dec 11 2014

A232774 Triangle T(n,k), read by rows, given by T(n,0)=1, T(n,1)=2^(n+1)-n-2, T(n,n)=(-1)^(n-1) for n > 0, T(n,k)=T(n-1,k)-T(n-1,k-1) for 1 < k < n.

Original entry on oeis.org

1, 1, 1, 1, 4, -1, 1, 11, -5, 1, 1, 26, -16, 6, -1, 1, 57, -42, 22, -7, 1, 1, 120, -99, 64, -29, 8, -1, 1, 247, -219, 163, -93, 37, -9, 1, 1, 502, -466, 382, -256, 130, -46, 10, -1, 1, 1013, -968, 848, -638, 386, -176, 56, -11, 1, 2036, -1981, 1816, -1486, 1024
Offset: 0

Views

Author

Philippe Deléham, Nov 30 2013

Keywords

Comments

Row sums are A000079(n) = 2^n.
Diagonal sums are A024493(n+1) = A130781(n).
Sum_{k=0..n} T(n,k)*x^k = -A003063(n+2), A159964(n), A000012(n), A000079(n), A001045(n+2), A056450(n), (-1)^(n+1)*A232015(n+1) for x = -2, -1, 0, 1, 2, 3, 4 respectively.

Examples

			Triangle begins:
  1;
  1,    1;
  1,    4,   -1;
  1,   11,   -5,   1;
  1,   26,  -16,   6,   -1;
  1,   57,  -42,  22,   -7,   1;
  1,  120,  -99,  64,  -29,   8,   -1;
  1,  247, -219, 163,  -93,  37,   -9,  1;
  1,  502, -466, 382, -256, 130,  -46, 10,  -1;
  1, 1013, -968, 848, -638, 386, -176, 56, -11, 1;
		

Crossrefs

Formula

G.f.: Sum_{n>=0, k=0..n} T(n,k)*y^k*x^n=(1+2*(y-1)*x)/((1-2*x)*(1+(y-1)*x)).
|T(2*n,n)| = 4^n = A000302(n).
T(n,k) = (-1)^(k-1) * (Sum_{i=0..n-k} (2^(i+1)-1) * binomial(n-i-1,k-1)) for 0 < k <= n and T(n,0) = 1 for n >= 0. - Werner Schulte, Mar 22 2019
Previous Showing 21-24 of 24 results.