A257027
Numbers k such that 7*R_(k+2) - 6*10^k is prime, where R_k = 11...1 is the repunit (A002275) of length k.
Original entry on oeis.org
0, 2, 3, 9, 11, 18, 74, 131, 144, 161, 224, 282, 390, 398, 614, 791, 1313, 1866, 9708, 10544, 13292, 13394, 29703, 30779, 72446
Offset: 1
For k=2, 7*R_4 - 6*10^2 = 7777 - 600 = 7177 which is prime.
a(1)=0 associated with 71, a(2)=2 associated with 7177, a(3)=3 associated with 71777, a(4)=9 associated with 71777777777, etc. - _Robert Price_, Jul 31 2016
-
[n: n in [0..300] | IsPrime((646*10^n-7) div 9)]; // Vincenzo Librandi, Apr 15 2015
-
Select[Range[0, 100000], PrimeQ[(646*10^#-7)/9 ] &]
-
for(n=0,200,if(isprime((646*10^n-7)/9),print1(n,", "))) \\ Derek Orr, Apr 14 2015
A262937
Numbers k such that (28*10^k - 13) / 3 is prime.
Original entry on oeis.org
0, 1, 2, 4, 5, 8, 10, 14, 17, 20, 33, 64, 80, 152, 158, 166, 194, 196, 198, 901, 971, 1289, 1595, 2921, 14390, 28781, 35840
Offset: 1
2 is in this sequence because (28*10^2 - 13) / 3 = 929 is prime.
Initial terms and associated primes:
a(1) = 0, 5;
a(2) = 1, 89;
a(3) = 2, 929;
a(4) = 4, 93329;
a(5) = 5, 933329, etc.
-
Select[Range[0, 100000], PrimeQ[(28*10^# - 13) / 3] &]
-
is(n)=ispseudoprime((28*10^n - 13)/3) \\ Charles R Greathouse IV, Jun 13 2017
A265938
Numbers k such that 6*10^k + 91 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 7, 10, 11, 14, 23, 31, 37, 42, 105, 106, 114, 137, 182, 212, 233, 313, 621, 629, 1067, 1570, 4612, 6288, 20030, 21843, 24800, 43694, 179970
Offset: 1
3 is in this sequence because 6*10^3+91 = 6091 is prime.
Initial terms and associated primes:
a(1) = 0, 97;
a(2) = 1, 151;
a(3) = 2, 691;
a(4) = 3, 6091;
a(5) = 4, 60091, etc.
-
Select[Range[0, 100000], PrimeQ[6*10^# + 91] &]
-
is(n)=ispseudoprime(6*10^n + 91) \\ Charles R Greathouse IV, Jun 13 2017
A266582
Numbers k such that (265*10^k - 7)/3 is prime.
Original entry on oeis.org
1, 2, 4, 9, 13, 14, 16, 46, 99, 112, 116, 127, 146, 208, 512, 848, 1132, 2167, 2482, 2666, 3625, 14410, 16567, 21529, 26272, 69554, 69602
Offset: 1
4 is in this sequence because (265*10^4 - 7)/3 = 883331 is prime.
Initial terms and associated primes:
a(1) = 1, 881;
a(2) = 2, 8831;
a(3) = 4, 883331l
a(4) = 9, 88333333331;
a(5) = 13, 883333333333331, etc.
-
Select[Range[0, 100000], PrimeQ[(265*10^# - 7)/3] &]
-
is(n)=ispseudoprime((265*10^n-7)/3) \\ Charles R Greathouse IV, Jun 13 2017
A267865
Numbers k such that 49*10^k + 1 is prime.
Original entry on oeis.org
1, 4, 5, 7, 9, 10, 18, 19, 34, 52, 71, 180, 238, 331, 370, 576, 925, 994, 1075, 1841, 2460, 2857, 6007, 6193, 10836, 18732, 58708, 72861
Offset: 1
4 is in this sequence because 49*10^4 + 1 = 490001 is prime.
Initial terms and associated primes:
a(1) = 1, 491;
a(2) = 4, 490001;
a(3) = 5, 4900001;
a(4) = 7, 490000001;
a(5) = 9, 49000000001, etc.
-
Select[Range[0, 100000], PrimeQ[49*10^#+1] &]
-
is(n)=ispseudoprime(49*10^n+1) \\ Charles R Greathouse IV, Jun 13 2017
A269797
Numbers k such that (29*10^k + 91)/3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 8, 11, 18, 27, 39, 54, 55, 65, 75, 83, 111, 164, 189, 191, 204, 252, 322, 371, 449, 646, 678, 754, 1641, 5210, 7787, 11691, 13682, 15994, 22356, 29203, 35756, 57834, 64027, 72985, 74276, 104071, 219124
Offset: 1
6 is in this sequence because (266*10^n+1)/3 = 88666667 is prime.
Initial terms and associated primes:
a(1) = 1, 127,
a(2) = 2, 997,
a(3) = 3, 9697,
a(4) = 4, 96697,
a(5) = 8, 966666697,
a(6) = 11, 966666666697,
a(7) = 18, 9666666666666666697,
a(8) = 27, 9666666666666666666666666697,
a(9) = 39, 9666666666666666666666666666666666666697, etc.
-
Select[Range[0, 100000], PrimeQ[(29*10^# + 91)/3] &]
-
isok(n) = isprime((29*10^n + 91)/3); \\ Michel Marcus, Mar 05 2016
A270448
Numbers k such that 10^k - 8001 is prime.
Original entry on oeis.org
4, 6, 8, 11, 12, 14, 23, 26, 42, 50, 54, 55, 66, 136, 145, 151, 200, 214, 888, 896, 1674, 2311, 2799, 2836, 2912, 5192, 5907, 8644, 8681, 11914, 18140, 27383, 36549, 57358, 84582, 161253, 167639, 186842, 193230, 204764
Offset: 1
4 is in this sequence because 10^4-8001 = 1999 is prime.
Initial terms and associated primes:
a(1) = 4, 1999;
a(2) = 6, 991999;
a(3) = 8, 99991999;
a(4) = 11, 99999991999;
a(5) = 12, 999999991999, etc.
-
isa := n -> isprime(10^n-8001):
select(isa, [$0..1000]); # Peter Luschny, Jul 22 2019
-
Select[Range[0, 100000], PrimeQ[10^#-8001 && # > 3] &] (* Corrected by Georg Fischer, Jul 22 2019 *)
-
isok(n) = isprime(10^n-8001); \\ Michel Marcus, Mar 18 2016
-
lista(nn) = for(n=1, nn, if(ispseudoprime(10^n-8001), print1(n, ", "))); \\ Altug Alkan, Mar 18 2016
A270738
Numbers k such that 23*10^k - 7 is prime.
Original entry on oeis.org
1, 2, 3, 6, 8, 12, 18, 19, 30, 65, 77, 126, 353, 541, 576, 723, 777, 1024, 1194, 1507, 2379, 2615, 4008, 4295, 4495, 4526, 9996, 10348, 10673, 14120, 22350, 70240, 93116, 122070, 136225, 183710, 224232, 234025, 270799
Offset: 1
3 is in this sequence because 23*10^3-7 = 22993 is prime.
Initial terms and associated primes:
a(1) = 1, 223;
a(2) = 2, 2293;
a(3) = 3, 22993;
a(4) = 6, 22999993;
a(5) = 8, 2299999993, etc.
-
Select[Range[0, 100000], PrimeQ[23*10^# - 7] &] (* Corrected by Georg Fischer, Jul 22 2019 *)
-
lista(nn) = {for(n=1, nn, if(ispseudoprime(23*10^n - 7), print1(n, ", "))); } \\ Altug Alkan, Mar 22 2016
A271107
Numbers k such that 33*10^k + 1 is prime.
Original entry on oeis.org
1, 2, 5, 6, 7, 8, 29, 47, 145, 205, 227, 505, 553, 600, 787, 809, 1305, 1447, 1593, 2285, 4763, 5679, 9133, 12516, 14869, 16536, 33402, 36085, 51933, 56443, 69133
Offset: 1
5 is in this sequence because 33*10^5+1 = 3300001 is prime.
Initial terms and associated primes:
a(1) = 1, 331;
a(2) = 2, 3301;
a(3) = 5, 3300001;
a(4) = 6, 33000001;
a(5) = 7, 330000001;
a(6) = 8, 3300000001, etc.
-
Select[Range[0, 100000], PrimeQ[33*10^#+1] &]
-
lista(nn) = for(n=1, nn, if(ispseudoprime(33*10^n+1), print1(n, ", "))); \\ Altug Alkan, Mar 31 2016
A271146
Numbers k such that (16*10^k - 19)/3 is prime.
Original entry on oeis.org
1, 4, 5, 6, 10, 13, 20, 22, 24, 35, 41, 42, 46, 155, 222, 336, 432, 538, 577, 637, 679, 750, 758, 785, 2262, 5436, 6806, 7962, 9757, 16016, 24588, 47918, 59062, 74092, 81896, 85495, 102299, 185978, 190420
Offset: 1
4 is in this sequence because (16*10^4 - 19)/3 = 53327 is prime.
Initial terms and associated primes:
a(1) = 1, 47;
a(2) = 4, 53327;
a(3) = 5, 533327;
a(4) = 6, 5333327;
a(5) = 10, 53333333327;
a(6) = 13, 53333333333327, etc.
-
Select[Range[0, 100000], PrimeQ[(16*10^# - 19)/3] &]
-
lista(nn) = {for(n=1, nn, if(ispseudoprime((16*10^n - 19)/3), print1(n, ", ")));} \\ Altug Alkan, Mar 31 2016
Comments