cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A375138 Numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed pattern 23-1.

Original entry on oeis.org

41, 81, 83, 105, 145, 161, 163, 165, 166, 167, 169, 209, 211, 233, 289, 290, 291, 297, 321, 323, 325, 326, 327, 329, 331, 332, 333, 334, 335, 337, 339, 361, 401, 417, 419, 421, 422, 423, 425, 465, 467, 489, 545, 553, 577, 578, 579, 581, 582, 583, 593, 595, 617
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
These are also numbers k such that the maximal weakly increasing runs in the reverse of the k-th composition in standard order do not have weakly decreasing leaders, where the leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The reverse version (A375137) ranks compositions matching the dashed pattern 1-32.

Examples

			Composition 89 is (2,1,3,1), which matches 2-3-1 but not 23-1.
Composition 165 is (2,3,2,1), which matches 23-1 but not 231.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The sequence together with corresponding compositions begins:
   41: (2,3,1)
   81: (2,4,1)
   83: (2,3,1,1)
  105: (1,2,3,1)
  145: (3,4,1)
  161: (2,5,1)
  163: (2,4,1,1)
  165: (2,3,2,1)
  166: (2,3,1,2)
  167: (2,3,1,1,1)
  169: (2,2,3,1)
  209: (1,2,4,1)
  211: (1,2,3,1,1)
  233: (1,1,2,3,1)
		

Crossrefs

The complement is too dense, but counted by A189076.
The non-dashed version is A335482, reverse A335480.
For leaders of identical runs we have A335486, reverse A335485.
Compositions of this type are counted by A374636.
The reverse version is A375137, counted by A374636.
Matching 12-1 also gives A375296, counted by A375140 (complement A188920).
A003242 counts anti-runs, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Run-length transform is A333627, sum A070939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],MatchQ[stc[#],{_,y_,z_,_,x_,_}/;x
    				

A375140 Number of integer compositions of n whose leaders of weakly increasing runs are not strictly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 3, 10, 26, 65, 151, 343, 750, 1614, 3410, 7123, 14724, 30220, 61639, 125166, 253233, 510936, 1028659, 2067620, 4150699, 8324552, 16683501, 33417933, 66910805, 133931495, 268023257, 536279457, 1072895973, 2146277961, 4293254010, 8587507415
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also the number of integer compositions of n matching the dashed patterns 1-32 or 1-21.

Examples

			The a(1) = 0 through a(6) = 10 compositions:
     .  .  .  (121)  (131)   (132)
                     (1121)  (141)
                     (1211)  (1131)
                             (1212)
                             (1221)
                             (1311)
                             (2121)
                             (11121)
                             (11211)
                             (12111)
		

Crossrefs

For leaders of identical runs we have A056823.
The complement is counted by A188920.
Leaders of weakly increasing runs are rows of A374629, sum A374630.
For weakly decreasing leaders we have A374636, ranks A375137 or A375138.
For leaders of weakly decreasing runs we have the complement of A374746.
Compositions of this type are ranked by A375295, reverse A375296.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A374637 counts compositions by sum of leaders of weakly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!Greater@@First/@Split[#,LessEqual]&]],{n,15}]
    - or -
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,_,z_,y_,_}/;x<=y
    				

Formula

a(n) = 2^(n-1) - A188920(n).

A375135 Number of integer compositions of n whose leaders of maximal strictly increasing runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 9, 25, 63, 152, 355, 809, 1804, 3963, 8590, 18423, 39161, 82620, 173198, 361101, 749326, 1548609, 3189132, 6547190, 13404613, 27378579, 55801506, 113517749, 230544752, 467519136, 946815630, 1915199736, 3869892105, 7812086380, 15756526347
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The composition y = (1,2,1,3,2,3) has strictly increasing runs ((1,2),(1,3),(2,3)), with leaders (1,1,2), which are not weakly decreasing, so y is counted under a(12).
The a(0) = 0 through a(8) = 25 compositions:
  .  .  .  .  .  (122)  (132)   (133)    (143)
                        (1122)  (142)    (152)
                        (1221)  (1132)   (233)
                                (1222)   (1133)
                                (1321)   (1142)
                                (2122)   (1223)
                                (11122)  (1232)
                                (11221)  (1322)
                                (12211)  (1331)
                                         (1421)
                                         (2132)
                                         (3122)
                                         (11132)
                                         (11222)
                                         (11321)
                                         (12122)
                                         (12212)
                                         (12221)
                                         (13211)
                                         (21122)
                                         (21221)
                                         (111122)
                                         (111221)
                                         (112211)
                                         (122111)
		

Crossrefs

For leaders of constant runs we have A056823.
For leaders of weakly increasing runs we have A374636, complement A189076?
The complement is counted by A374697.
For leaders of anti-runs we have A374699, complement A374682.
Other functional neighbors: A188920, A374764, A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], !GreaterEqual@@First/@Split[#,Less]&]],{n,0,15}]

Formula

a(n) = A011782(n) - A374697(n). - Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A375295 Numbers k such that the leaders of maximal weakly increasing runs in the k-th composition in standard order (row k of A066099) are not strictly decreasing.

Original entry on oeis.org

13, 25, 27, 29, 45, 49, 50, 51, 53, 54, 55, 57, 59, 61, 77, 82, 89, 91, 93, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 141, 153, 155, 157, 162, 165, 173, 177, 178, 179, 181, 182, 183, 185, 187, 189
Offset: 1

Views

Author

Gus Wiseman, Aug 12 2024

Keywords

Comments

First differs from the non-dashed version in lacking 166, corresponding to the composition (2,3,1,2).
The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed patterns 1-32 or 1-21.

Examples

			The sequence together with corresponding compositions begins:
  13: (1,2,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  45: (2,1,2,1)
  49: (1,4,1)
  50: (1,3,2)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  77: (3,1,2,1)
  82: (2,3,2)
  89: (2,1,3,1)
  91: (2,1,2,1,1)
  93: (2,1,1,2,1)
		

Crossrefs

For leaders of identical runs we have A335485.
Positions of non-strictly decreasing rows in A374629 (sums A374630).
For identical leaders we have A374633, counted by A374631.
Matching 1-32 only gives A375137, reverse A375138, both counted by A374636.
Interchanging weak/strict gives A375139, counted by A375135.
Compositions of this type are counted by A375140, complement A188920.
The reverse version is A375296.
A003242 counts anti-runs, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A374637 counts compositions by sum of leaders of weakly increasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Run-length transform is A333627, sum A070939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!Greater@@First/@Split[stc[#],LessEqual]&]
    - or -
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,z_,y_,_}/;x<=y
    				

A375296 Numbers k such that the leaders of maximal weakly increasing runs in the reverse of the k-th composition in standard order (row k of A228351) are not strictly decreasing.

Original entry on oeis.org

13, 25, 27, 29, 41, 45, 49, 51, 53, 54, 55, 57, 59, 61, 77, 81, 82, 83, 89, 91, 93, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 115, 117, 118, 119, 121, 123, 125, 141, 145, 153, 155, 157, 161, 162, 163, 165, 166, 167, 169, 173, 177, 179, 181, 182
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2024

Keywords

Comments

The leaders of maximal weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Also numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed patterns 23-1 or 12-1.

Examples

			The sequence together with corresponding compositions begins:
  13: (1,2,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  41: (2,3,1)
  45: (2,1,2,1)
  49: (1,4,1)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
		

Crossrefs

For leaders of identical runs we have A335486, reverse A335485.
Matching 1-32 only gives A375138, reverse A375137, both counted by A374636.
Compositions of this type are counted by A375140, complement A188920.
The reverse version is A375295.
A003242 counts anti-runs, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A374637 counts compositions by sum of leaders of weakly increasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Run-length transform is A333627, sum A070939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!Greater@@First/@Split[Reverse[stc[#]],LessEqual]&]
    - or -
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,300],MatchQ[stc[#],{_,y_,z_,_,x_,_}/;x<=y
    				

A374699 Number of integer compositions of n whose leaders of maximal anti-runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 5, 14, 34, 78, 180, 407, 907, 2000, 4364, 9448, 20323, 43448, 92400, 195604, 412355, 866085, 1813035, 3783895, 7875552
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 0 through a(8) = 14 compositions:
  .  .  .  .  .  (122)  (1122)  (133)    (233)
                        (1221)  (1222)   (1133)
                                (11122)  (1223)
                                (11221)  (1322)
                                (12211)  (1331)
                                         (11222)
                                         (12122)
                                         (12212)
                                         (12221)
                                         (21122)
                                         (111122)
                                         (111221)
                                         (112211)
                                         (122111)
		

Crossrefs

The complement is counted by A374682.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A056823.
- For leaders of weakly increasing runs we have A374636, complement A189076?
- For leaders of strictly increasing runs: A375135, complement A374697.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374640, ranks A374520, complement A374517, ranks A374519.
- For distinct leaders we have A374678, ranks A374639, complement A374518, ranks A374638.
- For weakly increasing leaders we have complement A374681.
- For strictly increasing leaders we have complement complement A374679.
- For strictly decreasing leaders we have complement A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.
A333381 counts maximal anti-runs in standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A237044 Number of overcompositions of n minus the number of partitions of n.

Original entry on oeis.org

0, 1, 2, 9, 21, 53, 133, 309, 706, 1572, 3534, 7752, 16991, 36807, 79385, 170528, 364563, 776739, 1649071, 3490698, 7366917, 15512544, 32583646, 68306009, 142902505, 298446956, 622232624, 1295316994, 2692580198, 5589582431, 11588900240, 23999045850
Offset: 0

Views

Author

Omar E. Pol, Feb 02 2014

Keywords

Crossrefs

Formula

a(n) = A236002(n) - A000041(n).

A237045 Number of overcompositions of n minus the number of overpartitions of n.

Original entry on oeis.org

0, 0, 0, 4, 12, 36, 104, 260, 628, 1448, 3344, 7464, 16564, 36180, 78480, 169232, 362732, 774172, 1645508, 3485788, 7360208, 15503432, 32571360, 68289536, 142880552, 298417848, 622194236, 1295266596, 2692514348, 5589496748, 11588789220, 23998902548
Offset: 0

Views

Author

Omar E. Pol, Feb 02 2014

Keywords

Comments

Number of overcompositions of n that contain at least two parts in increasing order.

Examples

			Illustration of a(4) = -6 with both overcompositions and overpartitions in colexicographic order.
--------------------------------------------------------
.    Overcompositions of 4      Overpartitions of 4
--------------------------------------------------------
.    _ _ _ _                    _ _ _ _
1   |.| | | |  1', 1,  1,  1   |.| | | |  1', 1,  1,  1
2   |_| | | |  1,  1,  1,  1   |_| | | |  1,  1,  1,  1
3   |  .|.| |  2', 1', 1       |  .|.| |  2', 1', 1
4   |   |.| |  2,  1', 1       |   |.| |  2,  1', 1
5   |  .| | |  2', 1,  1       |  .| | |  2', 1,  1
6   |_ _| | |  2,  1,  1       |_ _| | |  2,  1,  1
7  *|.|  .| |  1', 2', 1       |    .|.|  3', 1
8  *| |  .| |  1,  2', 1       |     |.|  3,  1
9  *|.|   | |  1', 2,  1       |    .| |  3', 1
10 *|_|   | |  1,  2,  1       |_ _ _| |  3,  1
11  |    .|.|  3', 1'          |  .|   |  2', 2
12  |     |.|  3,  1'          |_ _|   |  2,  2
13  |    .| |  3', 1           |      .|  4'
14  |_ _ _| |  3,  1           |_ _ _ _|  4
15 *|.| |  .|  1', 1,  2'
16 *| | |  .|  1,  1,  2'
17 *|.| |   |  1', 1,  2
18 *|_| |   |  1,  1,  2
19  |  .|   |  2', 2
20  |_ _|   |  2,  2
21 *|.|    .|  1', 3'
22 *| |    .|  1,  3'
23 *|.|     |  1', 3
24 *|_|     |  1,  3
25  |      .|  4'
26  |_ _ _ _|  4
.
There are 26 overcompositions of 4 and there are 14 overpartitions of 4, so the difference is a(4) = 26 - 14 = 12.
On the other hand there are 12 overcompositions of 4 that contain at least two parts in increasing order, so a(4) = 12.
		

Crossrefs

Formula

a(n) = A236002(n) - A015128(n).

A237047 Number of compositions of n minus the number of overpartitions of n.

Original entry on oeis.org

0, -1, -2, -4, -6, -8, -8, 0, 28, 102, 280, 680, 1544, 3368, 7152, 14912, 30706, 62672, 127124, 256744, 516952, 1038672, 2083864, 4176576, 8365080, 16746150, 33513608, 67055456, 134148160, 268345208, 536754288, 1073591680, 2147291036, 4294721040, 8589620784
Offset: 0

Views

Author

Omar E. Pol, Feb 02 2014

Keywords

Comments

Note that a(7) = 0 therefore 7 is the only positive integer whose number of compositions equals the number of overpartitions: A011782(7) = A015128(7) = 64.

Examples

			Illustration of a(4) = -6.
--------------------------------------------------------
.     Compositions of 4          Overpartitions of 4
--------------------------------------------------------
.    _ _ _ _                    _ _ _ _
1   |_| | | |  1, 1, 1, 1      |.| | | |  1', 1,  1,  1
2   |_ _| | |  2, 1, 1         |_| | | |  1,  1,  1,  1
3   |_|   | |  1, 2, 1         |  .|.| |  2', 1', 1
4   |_ _ _| |  3, 1            |   |.| |  2,  1', 1
5   |_| |   |  1, 1, 2         |  .| | |  2', 1,  1
6   |_ _|   |  2, 2            |_ _| | |  2,  1,  1
7   |_|     |  1, 3            |    .|.|  3', 1
8   |_ _ _ _|  4               |     |.|  3,  1
9                              |    .| |  3', 1
10                             |_ _ _| |  3,  1
11                             |  .|   |  2', 2
12                             |_ _|   |  2,  2
13                             |      .|  4'
14                             |_ _ _ _|  4
.
There are 8 compositions of 4 and there are 14 overpartitions of 4, so a(4) = 8 - 14 = -6.
		

Crossrefs

Formula

a(n) = A011782(n) - A015128(n).

A335447 Number of (1,2)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 5, 0, 0, 1, 1, 1, 5, 0, 1, 1, 3, 0, 5, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 11, 0, 1, 2, 0, 1, 5, 0, 2, 1, 5, 0, 9, 0, 1, 2, 2, 1, 5, 0, 4, 0, 1, 0, 11, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2020

Keywords

Comments

Depends only on sorted prime signature (A118914).
Also the number of (2,1)-matching permutations of the prime indices of n.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 6, 12, 24, 48, 30, 72, 60:
  (12)  (112)  (1112)  (11112)  (123)  (11122)  (1123)
        (121)  (1121)  (11121)  (132)  (11212)  (1132)
               (1211)  (11211)  (213)  (11221)  (1213)
                       (12111)  (231)  (12112)  (1231)
                                (312)  (12121)  (1312)
                                       (12211)  (1321)
                                       (21112)  (2113)
                                       (21121)  (2131)
                                       (21211)  (2311)
                                                (3112)
                                                (3121)
		

Crossrefs

The avoiding version is A000012.
Patterns are counted by A000670.
Positions of zeros are A000961.
(1,2)-matching patterns are counted by A002051.
Permutations of prime indices are counted by A008480.
(1,2)-matching compositions are counted by A056823.
STC-numbers of permutations of prime indices are A333221.
Patterns matched by standard compositions are counted by A335454.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Dimensions of downsets of standard compositions are A335465.
(1,2)-matching compositions are ranked by A335485.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],!GreaterEqual@@#&]],{n,100}]

Formula

a(n) = A008480(n) - 1.
Previous Showing 11-20 of 29 results. Next