cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056823 Number of compositions minus number of partitions: A011782(n) - A000041(n).

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 21, 49, 106, 226, 470, 968, 1971, 3995, 8057, 16208, 32537, 65239, 130687, 261654, 523661, 1047784, 2096150, 4193049, 8387033, 16775258, 33551996, 67105854, 134214010, 268430891, 536865308, 1073734982, 2147475299, 4294957153, 8589922282
Offset: 0

Views

Author

Alford Arnold, Aug 29 2000

Keywords

Comments

Previous name was: Counts members of A056808 by number of factors.
A056808 relates to least prime signatures (cf. A025487)
a(n) is also the number of compositions of n that are not partitions of n. - Omar E. Pol, Jan 31 2009, Oct 14 2013
a(n) is the number of compositions of n into positive parts containing pattern [1,2]. - Bob Selcoe, Jul 08 2014

Examples

			A011782 begins     1 1 2 4 8 16 32 64 128 256 ...;
A000041 begins     1 1 2 3 5  7 11 15  22  30 ...;
so sequence begins 0 0 0 1 3  9 21 49 106 226 ... .
For n = 3 the factorizations are 8=2*2*2, 12=2*2*3, 18=2*3*3 and 30=2*3*5.
a(5) = 9: {[1,1,1,2], [1,1,2,1], [1,1,3], [1,2,1,1], [1,2,2], [1,3,1], [1,4], [2,1,2], [2,3]}. - _Bob Selcoe_, Jul 08 2014
		

Crossrefs

The version for patterns is A002051.
(1,2)-avoiding compositions are just partitions A000041.
The (1,1)-matching version is A261982.
The version for prime indices is A335447.
(1,2)-matching compositions are ranked by A335485.
Patterns matched by compositions are counted by A335456.

Programs

  • Maple
    a:= n-> ceil(2^(n-1))-combinat[numbpart](n):
    seq(a(n), n=0..37);  # Alois P. Heinz, Jan 30 2020
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!GreaterEqual@@#&]],{n,0,10}] (* Gus Wiseman, Jun 24 2020 *)
    a[n_] := If[n == 0, 0, 2^(n-1) - PartitionsP[n]];
    a /@ Range[0, 37] (* Jean-François Alcover, May 23 2021 *)

Formula

a(n) = A011782(n) - A000041(n).
a(n) = 2*a(n-1) + A117989(n-1). - Bob Selcoe, Apr 11 2014
G.f.: (1 - x) / (1 - 2*x) - Product_{k>=1} 1 / (1 - x^k). - Ilya Gutkovskiy, Jan 30 2020

Extensions

More terms from James Sellers, Aug 31 2000
New name from Joerg Arndt, Sep 02 2013

A335485 Numbers k such that the k-th composition in standard order (A066099) is not weakly decreasing.

Original entry on oeis.org

6, 12, 13, 14, 20, 22, 24, 25, 26, 27, 28, 29, 30, 38, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 70, 72, 76, 77, 78, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

Also compositions matching the pattern (1,2).
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
   6: (1,2)
  12: (1,3)
  13: (1,2,1)
  14: (1,1,2)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  25: (1,3,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  38: (3,1,2)
  40: (2,4)
		

Crossrefs

The complement A114994 is the avoiding version.
The (2,1)-matching version is A335486.
Patterns matching this pattern are counted by A002051 (by length).
Permutations of prime indices matching this pattern are counted by A335447.
These compositions are counted by A056823 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_}/;x
    				

A002051 Steffensen's bracket function [n,2].

Original entry on oeis.org

0, 0, 1, 9, 67, 525, 4651, 47229, 545707, 7087005, 102247051, 1622631549, 28091565547, 526858344285, 10641342962251, 230283190961469, 5315654681948587, 130370767029070365, 3385534663256714251, 92801587319328148989, 2677687796244383678827, 81124824998504072833245, 2574844419803190382447051
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ways to arrange the blocks of the partitions of {1,2,...,n} in an undirected cycle of length 3 or more, see A000629. - Geoffrey Critzer, Nov 23 2012
From Gus Wiseman, Jun 24 2020: (Start)
Also the number of (1,2)-matching length-n sequences covering an initial interval of positive integers. For example, the a(2) = 1 and a(3) = 9 sequences are:
(1,2) (1,1,2)
(1,2,1)
(1,2,2)
(1,2,3)
(1,3,2)
(2,1,2)
(2,1,3)
(2,3,1)
(3,1,2)
Missing from this list are:
(1,1) (1,1,1)
(2,1) (2,1,1)
(2,2,1)
(3,2,1)
(End)

Examples

			a(4) = 9. There are 6 partitions of {1,2,3,4} into exactly three blocks and one way to put them in an undirected cycle of length three. There is one partition of {1,2,3,4} into four blocks and 3 ways to make an undirected cycle of length four. 6 + 3 = 9. - _Geoffrey Critzer_, Nov 23 2012
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Steffensen, J. F. Interpolation. 2d ed. Chelsea Publishing Co., New York, N. Y., 1950. ix+248 pp. MR0036799 (12,164d)

Crossrefs

A diagonal of the triangular array in A241168.
(1,2)-avoiding patterns are counted by A011782.
(1,1)-matching patterns are counted by A019472.
(1,2)-matching permutations are counted by A033312.
(1,2)-matching compositions are counted by A056823.
(1,2)-matching permutations of prime indices are counted by A335447.
(1,2)-matching compositions are ranked by A335485.
Patterns are counted by A000670 and ranked by A333217.
Patterns matched by compositions are counted by A335456.

Programs

  • Mathematica
    a[n_] := Sum[ k!*StirlingS2[n-1, k], {k, 0, n-1}] - 2^(n-2); Table[a[n], {n, 3, 17}] (* Jean-François Alcover, Nov 18 2011, after Manfred Goebel *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!GreaterEqual@@#&]],{n,0,5}] (* Gus Wiseman, Jun 24 2020 *)
  • PARI
    a(n) = sum(s=2, n-1, stirling(n,s+1,2)*s!/2); \\ Michel Marcus, Jun 24 2020

Formula

[n,2] = Sum_{s=2..n-1} Stirling2(n,s+1)*s!/2 (cf. A241168).
a(1)=0; for n >= 2, a(n) = A000670(n-1) - 2^(n-2). - Manfred Goebel (mkgoebel(AT)essex.ac.uk), Feb 20 2000; formula adjusted by N. J. A. Sloane, Apr 22 2014. For example, a(5) = 67 = A000670(4)-2^3 = 75-8 = 67.
E.g.f.: (1 - exp(2*x) - 2*log(2 - exp(x)))/4 = B(A(x)) where A(x) = exp(x)-1 and B(x) = (log(1/(1-x))- x - x^2/2)/2. - Geoffrey Critzer, Nov 23 2012

Extensions

Entry revised by N. J. A. Sloane, Apr 22 2014
Showing 1-3 of 3 results.