cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 66 results. Next

A178009 Number of permutations of 1..n with no element e[i>=2]

Original entry on oeis.org

1, 1, 1, 2, 6, 24, 60, 240, 1260, 8064, 36288, 241920, 1995840, 19160064, 124540416, 1162377216, 13076743680, 167382319104, 1422749712384, 17072996548608, 243290200817664, 3892643213082624, 34060628114472960, 428190753439088640, 6463004184721244160
Offset: 0

Views

Author

R. H. Hardin, May 17 2010

Keywords

Crossrefs

Simple 2-way heap A056971.
Column k=4 of A273693.

Extensions

a(0), a(20)-a(24) from Alois P. Heinz, May 27 2016

A309052 Total number of 1's in all (binary) max-heaps on n elements from the set {0,1}.

Original entry on oeis.org

0, 1, 3, 8, 15, 31, 54, 105, 166, 298, 478, 863, 1307, 2247, 3500, 6136, 9032, 15084, 23039, 39599, 57955, 96019, 145627, 248223, 357650, 583274, 875459, 1476754, 2131618, 3476550, 5210521, 8766473, 12498445, 20138409, 29952394, 50020414, 71658602, 115850282
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Comments

Also the total number of 0's in all (binary) min-heaps on n elements from the set {0,1}.

Examples

			a(4) = 15 = 0+1+2+2+3+3+4, the total number of 1's in 0000, 1000, 1010, 1100, 1101, 1110, 1111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
          1+x*b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    a:= n-> subs(x=1, diff(b(n), x)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_][x_] := b[n][x] = If[n == 0, 1, Function[g, Function[f, Expand[1 + x b[f][x] b[n - 1 - f][x]]][Min[g - 1, n - g/2]]][2^(Length[IntegerDigits[ n, 2]] - 1)]];
    a[n_] := b[n]'[1];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} (n-k) * A309049(n,k).
a(n) = n * A091980(n+1) - A309051(n).
a(2^n-1) = A024358(n).

A323957 Number of defective (binary) heaps on n elements with exactly one defect.

Original entry on oeis.org

0, 1, 2, 9, 28, 90, 360, 1526, 7616, 32460, 190800, 947760, 6382464, 37065600, 296524800, 1812861600, 15283107840, 105015593280, 1017540576000, 7304720544000, 74472335308800, 629300251008000, 7429184791142400, 62417372203929600, 746041213793075200
Offset: 1

Views

Author

Alois P. Heinz, Feb 09 2019

Keywords

Comments

Or number of permutations p of [n] having exactly one index i in {1,...,n} such that p(i) > p(floor(i/2)).

Examples

			a(2) = 1: 12.
a(3) = 2: 213, 231.
a(4) = 9: 2413, 3124, 3214, 3241, 3412, 3421, 4123, 4132, 4213.
a(5) = 28: 25134, 25143, 35124, 35142, 35214, 35241, 42315, 42351, 43125, 43152, 43215, 43251, 43512, 43521, 45123, 45132, 45213, 45231, 45312, 45321, 52314, 52341, 52413, 52431, 53124, 53142, 53214, 53241.
a(6) = 90: 362451, 362541, 436125, 436215, ..., 652314, 652413, 653124, 653214.
(The examples use max-heaps.)
		

Crossrefs

Column k=1 of A306343.

Programs

  • Maple
    b:= proc(u, o) option remember; local n, g, l; n:= u+o;
          if n=0 then 1
        else g:= 2^ilog2(n); l:= min(g-1, n-g/2); expand(
             add(add(binomial(j-1, i)*binomial(n-j, l-i)*
             b(i, l-i)*b(j-1-i, n-l-j+i), i=0..min(j-1, l)), j=1..u)+
             add(add(binomial(j-1, i)*binomial(n-j, l-i)*
             b(l-i, i)*b(n-l-j+i, j-1-i), i=0..min(j-1, l)), j=1..o)*x)
          fi
        end:
    a:= n-> coeff(b(n, 0), x, 1):
    seq(a(n), n=1..25);
  • Mathematica
    b[u_, o_] := b[u, o] = Module[{n = u+o, g, l}, If[n == 0, 1,
         g = 2^(Length[IntegerDigits[n, 2]] - 1);
         l = Min[g - 1, n - g/2]; Expand[
         Sum[ Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
         b[i, l-i]*b[j-1-i, n-l-j+i], {i, 0, Min[j-1, l]}], {j, 1, u}] +
         Sum[Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
         b[l-i, i]*b[n-l-j+i, j-1-i], {i, 0, Min[j-1, l]}], {j, 1, o}]*x]]];
    a[n_] := Coefficient[b[n, 0], x, 1];
    Array[a, 25] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)

A373452 Number of (binary) heaps of length n whose element set equals [k] (for some k <= n).

Original entry on oeis.org

1, 1, 2, 6, 16, 64, 252, 1460, 6256, 39760, 230056, 1920152, 12154416, 113087888, 916563592, 10586707896, 80444848064, 898922718272, 8634371968224, 117894609062176, 1160052513737280, 16638593775310528, 200744153681516384, 3415784055462112160, 38542918215425934624
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2024

Keywords

Comments

These heaps may contain repeated elements. Their element sets are gap-free and contain 1 (if nonempty).

Examples

			a(0) = 1: the empty heap.
a(1) = 1: 1.
a(2) = 2: 11, 21.
a(3) = 6: 111, 211, 212, 221, 312, 321.
a(4) = 16: 1111, 2111, 2121, 2211, 2212, 2221, 3121, 3211, 3212, 3221, 3231, 3312, 3321, 4231, 4312, 4321.
(The examples use max-heaps.)
		

Crossrefs

Row sums of A373451.
Cf. A000670, A056971 (distinct elements), A373450.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
         (g-> (f-> add(b(f, j)*b(n-1-f, j), j=1..k)
                 )(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    a:= n-> add(add(binomial(k, j)*(-1)^j*b(n, k-j), j=0..k), k=0..n):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Function[g, Function[f, Sum[b[f, j]*b[n - 1 - f, j], {j, 1, k}]][Min[g - 1, n - g/2]]][2^(Length@IntegerDigits[n, 2] - 1)]];
    T[n_, k_] := Sum[Binomial[k, j]*(-1)^j*b[n, k - j], {j, 0, k}];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 24 2024, after Alois P. Heinz *)

A133385 Number of permutations of n elements divided by the number of (binary) heaps on n+1 elements.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 9, 24, 45, 108, 189, 504, 945, 2268, 3969, 12096, 25515, 68040, 130977, 381024, 773955, 2000376, 3750705, 11430720, 24111675, 64297800, 123773265, 360067680, 731387475, 1890355320, 3544416225, 11522165760, 25823603925, 72913705200, 148156598205
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2007

Keywords

Comments

In a min-heap on (n+1) distinct elements only n elements can change places, since the first element is determined to be the minimum. a(n) gives the number of all possibilities divided by the number of legal possibilities to do this.
Is this the sequence mentioned on page 360 of Motzkin (1948)? - N. J. A. Sloane, Jul 04 2015

Examples

			a(4) = 3 because 3 = 24/8 and there are 4! = 24 permutations on 4 elements and 8 min-heaps on 5 elements, namely (0,1,2,3,4), (0,1,2,4,3), (0,1,3,2,4), (0,1,3,4,2), (0,1,4,2,3), (0,1,4,3,2), (0,2,1,3,4), and (0,2,1,4,3). In every (min-) heap, the element at position i has to be larger than the element at position floor(i/2) for all i=2..n. The minimum is always found at position 1.
		

Crossrefs

Column k=2 of A273730.

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 1, (b-> (f->
          h(f)*n*h(n-1-f))(min(b-1, n-b/2)))(2^ilog2(n)))
        end:
    a:= n-> h(n+1)/(n+1):
    seq(a(n), n=0..50);
  • Mathematica
    aa[n_] := aa[n] = Module[{b, nl}, If[n<2, 1, b = 2^Floor[Log[2, n]]; nl = Min[b-1, n-b/2]; n*aa[nl]*aa[n-1-nl]]]; a[n_] := aa[n+1]/(n+1); Table[a[i], {i, 0, 50}] (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)

Formula

a(n) = A132862(n+1)/(n+1) = A000142(n)/A056971(n+1).

A178010 Number of permutations of 1..n with no element e[i>=2]

Original entry on oeis.org

1, 1, 1, 2, 6, 24, 120, 360, 1680, 10080, 72576, 604800, 3326400, 26611200, 259459200, 2905943040, 36324288000, 290594304000, 3293402112000, 44460928512000, 675806113382400, 11263435223040000, 118266069841920000, 1734569024348160000, 29921315670005760000
Offset: 0

Views

Author

R. H. Hardin, May 17 2010

Keywords

Crossrefs

Simple 2-way heap A056971.
Column k=5 of A273693.

Extensions

a(0), a(21)-a(24) from Alois P. Heinz, May 27 2016

A178011 Number of permutations of 1..n with no element e[i>=2]

Original entry on oeis.org

1, 1, 1, 2, 6, 24, 120, 720, 2520, 13440, 90720, 725760, 6652800, 68428800, 444787200, 4151347200, 46702656000, 597793996800, 8468748288000, 130660687872000, 1241276534784000, 16550353797120000, 260668072304640000, 4587758072561664000, 87932029724098560000
Offset: 0

Views

Author

R. H. Hardin, May 17 2010

Keywords

Crossrefs

Simple 2-way heap A056971.
Column k=6 of A273693.

Extensions

a(0), a(21)-a(24) from Alois P. Heinz, May 27 2016

A309051 Total number of 0's in all (binary) max-heaps on n elements from the set {0,1}.

Original entry on oeis.org

0, 1, 3, 7, 13, 24, 42, 77, 122, 206, 332, 578, 889, 1484, 2338, 4019, 5960, 9685, 14887, 25134, 37225, 60704, 92919, 156646, 227302, 364551, 550329, 917822, 1337358, 2158150, 3258779, 5441757, 7800755, 12412461, 18546566, 30708486, 44327782, 71090442
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2019

Keywords

Comments

Also the total number of 1's in all (binary) min-heaps on n elements from the set {0,1}.

Examples

			a(4) = 13 = 4+3+2+2+1+1+0, the total number of 0's in 0000, 1000, 1010, 1100, 1101, 1110, 1111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
          x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    a:= n-> subs(x=1, diff(b(n), x)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_][x_] := b[n][x] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f][x] b[n - 1 - f][x]]][Min[g - 1, n - g/2]]][2^(Length[IntegerDigits[ n, 2]] - 1)]];
    a[n_] := b[n]'[1];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 22 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A309049(n,k).
a(n) = n * A091980(n+1) - A309052(n).

A373450 Number of (binary) heaps of length n whose element set is a subset of [n].

Original entry on oeis.org

1, 1, 3, 14, 65, 448, 3136, 32028, 251922, 2891801, 30684797, 464651863, 5434037232, 92246217970, 1379368317328, 29135744093948, 414052904722966, 8546218817446727, 152935671938144301, 3857215760145872627, 70913916905782150177, 1881992311219764068420
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2024

Keywords

Comments

These heaps may contain repeated elements.

Examples

			a(0) = 1: the empty heap.
a(1) = 1: 1.
a(2) = 3: 11, 21, 22.
a(3) = 14: 111, 211, 212, 221, 222, 311, 312, 313, 321, 322, 323, 331, 332, 333.
(The examples use max-heaps.)
		

Crossrefs

Main diagonal of A373449.
Cf. A056971 (distinct elements), A373452 (gap-free element sets including 1).

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
         (g-> (f-> add(b(f, j)*b(n-1-f, j), j=1..k)
                 )(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..21);

Formula

a(n) = A373449(n,n).
a(n) = Sum_{k=0..n} binomial(n,k)*A373451(n,k).

A246747 The number of binary heaps on n elements whose breadth-first search reading word avoids 231.

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 14, 37, 80, 222, 544, 1601, 4095, 12416, 33785, 105769, 293747, 935184, 2717376, 8848014, 26134254, 86210716, 262068267, 877833206, 2695238060, 9109101156, 28619396967, 97879220771, 310021153392, 1067906857449, 3440140082033, 11957123227292
Offset: 0

Views

Author

Manda Riehl, Sep 04 2014

Keywords

Comments

Also, the number of binary heaps on n elements whose breadth-first search reading word avoids 312.
Note that a breadth-first search reading word is equivalent to reading the tree labels left to right by levels, starting with the root.
For more information on heaps, see A056971.

Examples

			A heap on 4 elements is pictured in the 2nd link, and has breadth first reading word abcd. Then for n = 4 the a(4) = 3 heaps have reading words 1234, 1243, and 1324.
		

Crossrefs

May be equal to A245899.

Formula

a(n) = Sum_{i=0..floor((n-1)/2)} A000108(i)*a(n-i-1) for n > 0.
Previous Showing 11-20 of 66 results. Next