cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 202 results. Next

A335446 Number of (1,2,1)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 7, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2020

Keywords

Comments

Depends only on unsorted prime signature (A124010), but not only on sorted prime signature (A118914).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 12, 24, 36, 60, 72, 90, 120, 144:
  (121)  (1121)  (1212)  (1213)  (11212)  (1232)  (11213)  (111212)
         (1211)  (1221)  (1231)  (11221)  (2132)  (11231)  (111221)
                 (2121)  (1312)  (12112)  (2312)  (11312)  (112112)
                         (1321)  (12121)  (2321)  (11321)  (112121)
                         (2131)  (12211)          (12113)  (112211)
                         (3121)  (21121)          (12131)  (121112)
                                 (21211)          (12311)  (121121)
                                                  (13112)  (121211)
                                                  (13121)  (122111)
                                                  (13211)  (211121)
                                                  (21131)  (211211)
                                                  (21311)  (212111)
                                                  (31121)
                                                  (31211)
		

Crossrefs

Positions of zeros are A065200.
The avoiding version is A335449.
Patterns are counted by A000670.
Permutations of prime indices are counted by A008480.
Unimodal permutations of prime indices are counted by A332288.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A333175.
STC-numbers of permutations of prime indices are A333221.
Patterns matched by standard compositions are counted by A335454.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Dimensions of downsets of standard compositions are A335465.
(1,2,1)-matching compositions are ranked by A335466.
(1,2,1)-matching compositions are counted by A335470.
(1,2,1)-matching patterns are counted by A335509.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x
    				

A335479 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,2,3).

Original entry on oeis.org

52, 104, 105, 108, 116, 180, 200, 208, 209, 210, 211, 212, 216, 217, 220, 232, 233, 236, 244, 308, 328, 360, 361, 364, 372, 400, 401, 404, 408, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 432, 433, 434, 435, 436, 440, 441, 444, 456, 464, 465, 466
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   52: (1,2,3)
  104: (1,2,4)
  105: (1,2,3,1)
  108: (1,2,1,3)
  116: (1,1,2,3)
  180: (2,1,2,3)
  200: (1,3,4)
  208: (1,2,5)
  209: (1,2,4,1)
  210: (1,2,3,2)
  211: (1,2,3,1,1)
  212: (1,2,2,3)
  216: (1,2,1,4)
  217: (1,2,1,3,1)
  220: (1,2,1,1,3)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;x
    				

A335470 Number of compositions of n matching the pattern (1,2,1).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 9, 24, 61, 141, 322, 713, 1543, 3289, 6907, 14353, 29604, 60640, 123522, 250645, 506808, 1022197, 2057594, 4135358, 8301139, 16648165, 33364948, 66831721, 133814251, 267850803, 536026676, 1072528081, 2145745276, 4292485526, 8586405894, 17174865820
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2020

Keywords

Comments

Also the number of (1,1,2)-matching or (2,1,1)-matching compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(4) = 1 through a(6) = 9 compositions:
  (121)  (131)   (141)
         (1121)  (1131)
         (1211)  (1212)
                 (1221)
                 (1311)
                 (2121)
                 (11121)
                 (11211)
                 (12111)
		

Crossrefs

The version for prime indices is A335446.
These compositions are ranked by A335466.
The complement A335471 is the avoiding version.
The (2,1,2)-matching version is A335472.
The version for patterns is A335509.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Compositions are counted by A011782.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by compositions are counted by A335456.
Minimal patterns avoided by a standard composition are counted by A335465.
Compositions matching (1,2,3) are counted by A335514.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,_,y_,_,x_,_}/;x
    				

Formula

a(n > 0) = 2^(n - 1) - A335471(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A335471 Number of compositions of n avoiding the pattern (1,2,1).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 40, 67, 115, 190, 311, 505, 807, 1285, 2031, 3164, 4896, 7550, 11499, 17480, 26379, 39558, 58946, 87469, 129051, 189484, 277143, 403477, 584653, 844236, 1213743, 1738372, 2481770, 3528698, 5003364, 7070225, 9958387, 13982822, 19580613, 27333403
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2020

Keywords

Comments

Also the number of (1,1,2)-avoiding or (2,1,1)-avoiding compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (211)   (113)
                        (1111)  (122)
                                (212)
                                (221)
                                (311)
                                (1112)
                                (2111)
                                (11111)
		

Crossrefs

The version for patterns is A001710.
The version for prime indices is A335449.
These compositions are ranked by A335467.
The complement A335470 is the matching version.
The (2,1,2)-avoiding version is A335473.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Compositions are counted by A011782.
Compositions avoiding (1,2,3) are counted by A102726.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by compositions are counted by A335456.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,_,y_,_,x_,_}/;x
    				
  • PARI
    a(n)={local(Cache=Map()); my(F(n,m,k)=if(m>n, m=n); if(m==0, n==0, my(hk=[n,m,k], z); if(!mapisdefined(Cache,hk,&z), z=self()(n,m-1,k) + k*sum(i=1,n\m, self()(n-i*m, m-1, k+i)); mapput(Cache, hk, z)); z)); F(n,n,1)} \\ Andrew Howroyd, Dec 31 2020

Formula

a(n > 0) = 2^(n - 1) - A335470(n).
a(n) = F(n,n,1) where F(n,m,k) = F(n,m-1,k) + k*(Sum_{i=1..floor(n/m)} F(n-i*m, m-1, k+i)) for m > 0 with F(0,m,k)=1 and F(n,0,k)=0 otherwise. - Andrew Howroyd, Dec 31 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A335473 Number of compositions of n avoiding the pattern (2,1,2).

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 29, 55, 103, 190, 347, 630, 1134, 2028, 3585, 6291, 10950, 18944, 32574, 55692, 94618, 159758, 268147, 447502, 743097, 1227910, 2020110, 3308302, 5394617, 8757108, 14155386, 22784542, 36529813, 58343498, 92850871, 147254007, 232750871, 366671436
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2020

Keywords

Comments

Also the number of (1,2,2) or (2,2,1)-avoiding compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

The version for patterns is A001710.
The version for prime indices is A335450.
These compositions are ranked by A335469.
The (1,2,1)-avoiding version is A335471.
The complement A335472 is the matching version.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Compositions are counted by A011782.
Compositions avoiding (1,2,3) are counted by A102726.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by compositions are counted by A335456.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,_,y_,_,x_,_}/;x>y]&]],{n,0,10}]
  • PARI
    a(n)={local(Cache=Map()); my(F(n,m,k) = if(m>n, n==0, my(hk=[n,m,k], z); if(!mapisdefined(Cache,hk,&z), z=self()(n,m+1,k) + k*sum(i=1,n\m, self()(n-i*m, m+1, k+i)); mapput(Cache, hk, z)); z)); F(n,1,1)} \\ Andrew Howroyd, Dec 31 2020

Formula

a(n > 0) = 2^(n - 1) - A335472(n).
a(n) = F(n,1,1) where F(n,m,k) = F(n,m+1,k) + k*(Sum_{i=1..floor(n/m)} F(n-i*m, m+1, k+i)) for m <= n with F(0,m,k)=1 and F(n,m,k)=0 otherwise. - Andrew Howroyd, Dec 31 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A335480 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,3,2).

Original entry on oeis.org

50, 98, 101, 102, 114, 178, 194, 196, 197, 198, 202, 203, 205, 206, 210, 226, 229, 230, 242, 306, 324, 354, 357, 358, 370, 386, 388, 389, 390, 393, 394, 395, 396, 397, 398, 402, 404, 405, 406, 407, 410, 411, 413, 414, 418, 421, 422, 434, 450, 452, 453, 454
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   50: (1,3,2)
   98: (1,4,2)
  101: (1,3,2,1)
  102: (1,3,1,2)
  114: (1,1,3,2)
  178: (2,1,3,2)
  194: (1,5,2)
  196: (1,4,3)
  197: (1,4,2,1)
  198: (1,4,1,2)
  202: (1,3,2,2)
  203: (1,3,2,1,1)
  205: (1,3,1,2,1)
  206: (1,3,1,1,2)
  210: (1,2,3,2)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Permutations matching (1,3,2,4) are counted by A158009.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;x
    				

A335464 Number of compositions of n with a run of length > 2.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 8, 18, 39, 86, 188, 406, 865, 1836, 3874, 8135, 17003, 35413, 73516, 152171, 314151, 647051, 1329936, 2728341, 5587493, 11424941, 23327502, 47567628, 96879029, 197090007, 400546603, 813258276, 1649761070, 3343936929, 6772740076, 13707639491
Offset: 0

Views

Author

Gus Wiseman, Jul 06 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also compositions contiguously matching the pattern (1,1,1).

Examples

			The a(3) = 1 through a(7) = 18 compositions:
  (111)  (1111)  (1112)   (222)     (1114)
                 (2111)   (1113)    (1222)
                 (11111)  (3111)    (2221)
                          (11112)   (4111)
                          (11121)   (11113)
                          (12111)   (11122)
                          (21111)   (11131)
                          (111111)  (13111)
                                    (21112)
                                    (22111)
                                    (31111)
                                    (111112)
                                    (111121)
                                    (111211)
                                    (112111)
                                    (121111)
                                    (211111)
                                    (1111111)
		

Crossrefs

Compositions contiguously avoiding (1,1) are A003242.
Compositions with some part > 2 are A008466.
Compositions by number of adjacent equal parts are A106356.
Compositions where each part is adjacent to an equal part are A114901.
Compositions contiguously avoiding (1,1,1) are A128695.
Compositions with adjacent parts coprime are A167606.
Compositions contiguously matching (1,1) are A261983.
Compositions with all equal parts contiguous are A274174.
Patterns contiguously matched by compositions are A335457.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`(abs(t)<>j,
           b(n-j, j), `if`(t=-j, 0, b(n-j, -j))), j=1..n))
        end:
    a:= n-> ceil(2^(n-1))-b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2020
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,x_,x_,_}]&]],{n,0,10}]
    (* Second program: *)
    b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[If[Abs[t] != j,
         b[n - j, j], If[t == -j, 0, b[n - j, -j]]], {j, 1, n}]];
    a[n_] := Ceiling[2^(n-1)] - b[n, 0];
    a /@ Range[0, 40] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

Formula

a(n) = A011782(n) - A128695(n). - Alois P. Heinz, Jul 06 2020

Extensions

a(23)-a(35) from Alois P. Heinz, Jul 06 2020

A335482 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (2,3,1).

Original entry on oeis.org

41, 81, 83, 89, 105, 145, 161, 163, 165, 166, 167, 169, 177, 179, 185, 209, 211, 217, 233, 289, 290, 291, 297, 305, 321, 323, 325, 326, 327, 329, 331, 332, 333, 334, 335, 337, 339, 345, 353, 355, 357, 358, 359, 361, 369, 371, 377, 401, 417, 419, 421, 422, 423
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   41: (2,3,1)
   81: (2,4,1)
   83: (2,3,1,1)
   89: (2,1,3,1)
  105: (1,2,3,1)
  145: (3,4,1)
  161: (2,5,1)
  163: (2,4,1,1)
  165: (2,3,2,1)
  166: (2,3,1,2)
  167: (2,3,1,1,1)
  169: (2,2,3,1)
  177: (2,1,4,1)
  179: (2,1,3,1,1)
  185: (2,1,1,3,1)
		

Crossrefs

The version counting permutations is A056986.
Patterns matching this pattern are counted by A335515 (by length).
Permutations of prime indices matching this pattern are counted by A335520.
These compositions are counted by A335514 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Permutations matching (1,3,2,4) are counted by A158009.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Other permutations:
- A335479 (1,2,3)
- A335480 (1,3,2)
- A335481 (2,1,3)
- A335482 (2,3,1)
- A335483 (3,1,2)
- A335484 (3,2,1)

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,z_,_}/;z
    				

A335485 Numbers k such that the k-th composition in standard order (A066099) is not weakly decreasing.

Original entry on oeis.org

6, 12, 13, 14, 20, 22, 24, 25, 26, 27, 28, 29, 30, 38, 40, 41, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 70, 72, 76, 77, 78, 80, 81, 82, 83, 84, 86, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

Also compositions matching the pattern (1,2).
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
   6: (1,2)
  12: (1,3)
  13: (1,2,1)
  14: (1,1,2)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  25: (1,3,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  38: (3,1,2)
  40: (2,4)
		

Crossrefs

The complement A114994 is the avoiding version.
The (2,1)-matching version is A335486.
Patterns matching this pattern are counted by A002051 (by length).
Permutations of prime indices matching this pattern are counted by A335447.
These compositions are counted by A056823 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_}/;x
    				

A335467 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,2,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 52, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			See A335466 for an example of the complement.
		

Crossrefs

The complement A335466 is the matching version.
The (2,1,2)-avoiding version is A335469.
These compositions are counted by A335471.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134 and ranked by A334030.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,y_,_,x_,_}/;x
    				
Previous Showing 31-40 of 202 results. Next