cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 202 results. Next

A335488 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1).

Original entry on oeis.org

3, 7, 10, 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with some part appearing more than once, or non-strict compositions.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  21: (2,2,1)
  22: (2,1,2)
  23: (2,1,1,1)
  25: (1,3,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
		

Crossrefs

The complement A233564 is the avoiding version.
Patterns matching this pattern are counted by A019472 (by length).
Permutations of prime indices matching this pattern are counted by A335487.
These compositions are counted by A261982 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
The (1,1,1)-matching case is A335512.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_}]&]

A335508 Number of patterns of length n matching the pattern (1,1,1).

Original entry on oeis.org

0, 0, 0, 1, 9, 91, 993, 12013, 160275, 2347141, 37496163, 649660573, 12142311195, 243626199181, 5224710549243, 119294328993853, 2889836999693355, 74037381200415901, 2000383612949821323, 56850708386783835133, 1695491518035158123115, 52949018580275965241821
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 9 patterns:
  (1,1,1)  (1,1,1,1)
           (1,1,1,2)
           (1,1,2,1)
           (1,2,1,1)
           (1,2,2,2)
           (2,1,1,1)
           (2,1,2,2)
           (2,2,1,2)
           (2,2,2,1)
		

Crossrefs

The complement A080599 is the avoiding version.
Permutations of prime indices matching this pattern are counted by A335510.
Compositions matching this pattern are counted by A335455 and ranked by A335512.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Patterns matching (1,2,3) are counted by A335515.
Cf. A276922.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    a:= n-> b(n$2)-b(n, 2):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,x_,_,x_,_}]&]],{n,0,6}]

Formula

a(n) = Sum_{k=3..n} A276922(n,k). - Alois P. Heinz, Jan 28 2024
a(n) = A000670(n) - A080599(n). - Andrew Howroyd, Jan 28 2024

Extensions

a(9)-a(21) from Alois P. Heinz, Jan 28 2024

A335510 Number of (1,1,1)-matching permutations of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Crossrefs

Patterns matching this pattern are counted by A335508.
These compositions are counted by A335455.
The (1,1)-matching version is A335487.
The complement A335511 is the avoiding version.
These permutations are ranked by A335512.
Permutations of prime indices are counted by A008480.
Patterns are counted by A000670 and ranked by A333217.
Anti-run permutations of prime indices are counted by A335452.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],MatchQ[#,{_,x_,_,x_,_,x_,_}]&]],{n,0,100}]

Formula

If n is cubefree, a(n) = 0; otherwise a(n) = A008480(n).

A335512 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1,1).

Original entry on oeis.org

7, 15, 23, 27, 29, 30, 31, 39, 42, 47, 51, 55, 57, 59, 60, 61, 62, 63, 71, 79, 85, 86, 87, 90, 91, 93, 94, 95, 99, 103, 106, 107, 109, 110, 111, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135, 143, 151, 155, 157, 158, 159, 167, 170, 171
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with some part appearing more than twice.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   7: (1,1,1)
  15: (1,1,1,1)
  23: (2,1,1,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
  39: (3,1,1,1)
  42: (2,2,2)
  47: (2,1,1,1,1)
  51: (1,3,1,1)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  60: (1,1,1,3)
		

Crossrefs

The complement A335513 is the avoiding version.
Patterns matching this pattern are counted by A335508 (by length).
Permutations of prime indices matching this pattern are counted by A335510.
These compositions are counted by A335455 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
The (1,1)-matching version is A335488.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_,x_,_}]&]

A335519 Number of contiguous divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 7, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 7, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 10, 2, 4, 6, 7, 4, 7, 2, 6, 4, 7, 2, 12, 2, 4, 6, 6, 4, 7, 2, 10, 5, 4, 2, 10, 4
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2020

Keywords

Comments

A divisor of n is contiguous if its prime factors, counting multiplicity, are a contiguous subsequence of the prime factors of n. Explicitly, a divisor d|n is contiguous if n can be written as n = x * d * y where the least prime factor of d is at least the greatest prime factor of x, and the greatest prime factor of d is at most the least prime factor of y.

Examples

			The a(84) = 10 distinct contiguous subsequences of (2,2,3,7) are (), (2), (3), (7), (2,2), (2,3), (3,7), (2,2,3), (2,3,7), (2,2,3,7), corresponding to the divisors 1, 2, 3, 7, 4, 6, 21, 12, 42, 84.
		

Crossrefs

The not necessarily contiguous version is A000005.
Each number's prime indices are given in the rows of A112798.
Contiguous subsequences of standard compositions are counted by A124771.
Minimal avoided patterns of prime indices are counted by A335550.
Patterns contiguously matched by partitions are counted by A335838.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[ReplaceList[primeMS[n],{_,s___,_}:>{s}]]],{n,100}]

Formula

a(n) = A325770(n) + 1.

A335521 Number of (1,2,3)-avoiding permutations of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 6, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 10, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) permutations for n = 1, 6, 12, 24, 30, 36, 60, 72, 120:
  ()  (12)  (112)  (1112)  (132)  (1122)  (1132)  (11122)  (11132)
      (21)  (121)  (1121)  (213)  (1212)  (1312)  (11212)  (11312)
            (211)  (1211)  (231)  (1221)  (1321)  (11221)  (11321)
                   (2111)  (312)  (2112)  (2113)  (12112)  (13112)
                           (321)  (2121)  (2131)  (12121)  (13121)
                                  (2211)  (2311)  (12211)  (13211)
                                          (3112)  (21112)  (21113)
                                          (3121)  (21121)  (21131)
                                          (3211)  (21211)  (21311)
                                                  (22111)  (23111)
                                                           (31112)
                                                           (31121)
                                                           (31211)
                                                           (32111)
		

Crossrefs

These compositions are counted by A102726.
Patterns avoiding this pattern are counted by A226316.
The complement A335520 is the matching version.
Permutations of prime indices are counted by A008480.
Patterns are counted by A000670 and ranked by A333217.
Anti-run permutations of prime indices are counted by A335452.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],!MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				

Formula

For n > 0, a(n) + A335520(n) = A008480(n).

A335474 Number of nonempty normal patterns contiguously matched by the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 2, 4, 4, 4, 1, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 7, 4, 7, 6, 5, 1, 2, 2, 4, 2, 3, 4, 6, 2, 4, 3, 6, 4, 6, 7, 8, 2, 4, 4, 7, 3, 7, 6, 10, 4, 7, 6, 10, 6, 10, 8, 6, 1, 2, 2, 4, 2, 3, 4, 6, 2, 4, 4, 6, 4, 6, 7, 8, 2, 4, 4, 7, 4, 6
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(n) patterns for n = 32, 80, 133, 290, 305, 329, 436 are:
      (1)  (1)   (1)    (1)    (1)     (1)     (1)
           (12)  (21)   (12)   (12)    (11)    (12)
                 (321)  (21)   (21)    (12)    (21)
                        (231)  (121)   (21)    (121)
                               (213)   (122)   (123)
                               (2131)  (221)   (212)
                                       (2331)  (1212)
                                               (2123)
                                               (12123)
		

Crossrefs

The version for Heinz numbers of partitions is A335516(n) - 1.
The non-contiguous version is A335454(n) - 1.
The version allowing empty patterns is A335458.
Patterns are counted by A000670 and ranked by A333217.
The n-th composition has A124771(n) distinct consecutive subsequences.
Knapsack compositions are counted by A325676 and ranked by A333223.
The n-th composition has A334299(n) distinct subsequences.
Minimal avoided patterns are counted by A335465.
Patterns matched by prime indices are counted by A335549.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Length[Union[mstype/@ReplaceList[stc[n],{_,s__,_}:>{s}]]],{n,0,100}]

Formula

a(n) = A335458(n) - 1.

A335475 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,2,2).

Original entry on oeis.org

26, 53, 54, 58, 90, 100, 106, 107, 109, 110, 117, 118, 122, 154, 164, 181, 182, 186, 201, 202, 204, 210, 212, 213, 214, 215, 218, 219, 221, 222, 228, 234, 235, 237, 238, 245, 246, 250, 282, 309, 310, 314, 329, 332, 346, 356, 362, 363, 365, 366, 373, 374, 378
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   26: (1,2,2)
   53: (1,2,2,1)
   54: (1,2,1,2)
   58: (1,1,2,2)
   90: (2,1,2,2)
  100: (1,3,3)
  106: (1,2,2,2)
  107: (1,2,2,1,1)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  117: (1,1,2,2,1)
  118: (1,1,2,1,2)
  122: (1,1,1,2,2)
  154: (3,1,2,2)
  164: (2,3,3)
		

Crossrefs

The complement A335525 is the avoiding version.
The (2,2,1)-matching version is A335477.
Patterns matching this pattern are counted by A335509 (by length).
Permutations of prime indices matching this pattern are counted by A335453.
These compositions are counted by A335472 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,y_,_}/;x
    				

A335513 Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,1,1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 58, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with no part appearing more than twice.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   0: ()         17: (4,1)      37: (3,2,1)
   1: (1)        18: (3,2)      38: (3,1,2)
   2: (2)        19: (3,1,1)    40: (2,4)
   3: (1,1)      20: (2,3)      41: (2,3,1)
   4: (3)        21: (2,2,1)    43: (2,2,1,1)
   5: (2,1)      22: (2,1,2)    44: (2,1,3)
   6: (1,2)      24: (1,4)      45: (2,1,2,1)
   8: (4)        25: (1,3,1)    46: (2,1,1,2)
   9: (3,1)      26: (1,2,2)    48: (1,5)
  10: (2,2)      28: (1,1,3)    49: (1,4,1)
  11: (2,1,1)    32: (6)        50: (1,3,2)
  12: (1,3)      33: (5,1)      52: (1,2,3)
  13: (1,2,1)    34: (4,2)      53: (1,2,2,1)
  14: (1,1,2)    35: (4,1,1)    54: (1,2,1,2)
  16: (5)        36: (3,3)      56: (1,1,4)
		

Crossrefs

These compositions are counted by A232432 (by sum).
The (1,1)-avoiding version is A233564.
The complement A335512 is the matching version.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Patterns avoiding (1,1,1) are counted by A080599 (by length).
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Permutations of prime indices avoiding (1,1,1) are counted by A335511.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,x_,_}]&]

A335517 Number of matching pairs of patterns, the longest having length n.

Original entry on oeis.org

1, 2, 9, 64, 623, 7866, 122967
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(0) = 1 through a(2) = 9 pairs of patterns:
  ()<=()    ()<=(1)      ()<=(1,1)
           (1)<=(1)      ()<=(1,2)
                         ()<=(2,1)
                        (1)<=(1,1)
                        (1)<=(1,2)
                        (1)<=(2,1)
                      (1,1)<=(1,1)
                      (1,2)<=(1,2)
                      (2,1)<=(2,1)
		

Crossrefs

Row sums of A335518.
Patterns are counted by A000670 and ranked by A333217.
Patterns matched by a standard composition are counted by A335454.
Patterns contiguously matched by compositions are counted by A335457.
Minimal patterns avoided by a standard composition are counted by A335465.
Patterns matched by prime indices are counted by A335549.

Programs

  • Mathematica
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[Union[mstype/@Subsets[y]]],{y,Join@@Permutations/@allnorm[n]}],{n,0,5}]
Previous Showing 61-70 of 202 results. Next