cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A181796 a(n) = number of divisors of n whose canonical prime factorizations contain no repeated positive exponents (cf. A130091).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 4, 2, 6, 3, 3, 3, 7, 2, 3, 3, 7, 2, 4, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 7, 3, 4, 2, 5, 3, 4, 2, 10, 2, 3, 5, 5, 3, 4, 2, 9, 5, 3, 2, 7, 3, 3, 3, 7, 2, 7, 3, 5, 3, 3, 3, 11, 2, 5, 5, 7, 2, 4, 2, 7, 4
Offset: 1

Views

Author

Matthew Vandermast, Nov 22 2010

Keywords

Comments

The canonical factorization of n into prime powers can be written as Product p(i)^e(i), for example. A host of equivalent notations can also be used (for another example, see Weisstein link). a(n) depends only on prime signature of n (cf. A025487).
a(n) >= A085082(n). (A085082(n) equals the number of members of A025487 that divide A046523(n), and each member of A025487 is divisible by at least one member of A130091 that divides no smaller member of A025487.) a(n) > A085082(n) iff n has in its canonical prime factorization at least two exponents greater than 1.
a(n) = number of such divisors of n that in their prime factorization all exponents are unique. - Antti Karttunen, May 27 2017
First differs from A335549 at a(90) = 7, A335549(90) = 8. First differs from A335516 at a(180) = 9, A335516(180) = 10. - Gus Wiseman, Jun 28 2020

Examples

			12 has a total of six divisors (1, 2, 3, 4, 6 and 12). Of those divisors, the number 1 has no prime factors, hence, no positive exponents at all (and no repeated positive exponents) in its canonical prime factorization. The lists of positive exponents for 2, 3, 4, 6 and 12 are (1), (1), (2), (1,1) and (2,1) respectively (cf. A124010). Of all six divisors, only the number 6 (2^1*3^1) has at least one positive exponent repeated (namely, 1). The other five do not; hence, a(12) = 5.
For n = 90 = 2 * 3^2 * 5, the divisors that satisfy the condition are: 1, 2, 3, 3^2, 5, 2 * 3^2, 3^2 * 5, altogether 7, (but for example 90 itself is not included), thus a(90) = 7.
		

Crossrefs

Diverges from A088873 at n=24 and from A085082 at n=36. a(36) = 7, while A085082(36) = 6.
Partitions with distinct multiplicities are A098859.
Sorted prime signature is A118914.
Unsorted prime signature is A124010.
a(n) is the number of divisors of n in A130091.
Factorizations with distinct multiplicities are A255231.
The largest of the counted divisors is A327498.
Factorizations using the counted divisors are A327523.

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, Length@ Union@ # == Length@ # &@ FactorInteger[#][[All, -1]] &], {n, 105}] (* Michael De Vlieger, May 28 2017 *)
  • PARI
    no_repeated_exponents(n) = { my(es = factor(n)[, 2]); if(length(Set(es)) == length(es),1,0); }
    A181796(n) = sumdiv(n,d,no_repeated_exponents(d)); \\ Antti Karttunen, May 27 2017
    
  • Python
    from sympy import factorint, divisors
    def ok(n):
        f=factorint(n)
        ex=[f[i] for i in f]
        for i in ex:
            if ex.count(i)>1: return 0
        return 1
    def a(n): return sum([1 for i in divisors(n) if ok(i)]) # Indranil Ghosh, May 27 2017

Formula

a(A000079(n)) = a(A002110(n)) = n+1.
a(A006939(n)) = A000110(n+1).
a(A181555(n)) = A002720(n).

A325770 Number of distinct nonempty contiguous subsequences of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 6, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 9, 1, 3, 5, 6, 3, 6, 1, 5, 3, 6, 1, 11, 1, 3, 5, 5, 3, 6, 1, 9, 4, 3, 1, 9, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

After a(1) = 0, first differs from A305611 at a(42) = 6, A305611(42) = 7.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(84) = 9 distinct nonempty contiguous subsequences of (4,2,1,1) are (1), (2), (4), (1,1), (2,1), (4,2), (2,1,1), (4,2,1), (4,2,1,1).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[ReplaceList[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],{_,s__,_}:>{s}]]],{n,30}]

Formula

a(n) = A335519(n) - 1.

Extensions

Name corrected by Gus Wiseman, Jun 27 2020

A335516 Number of normal patterns contiguously matched by the prime indices of n in increasing or decreasing order, counting multiplicity.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 4, 2, 6, 3, 3, 3, 7, 2, 3, 3, 7, 2, 4, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 7, 3, 4, 2, 5, 3, 4, 2, 10, 2, 3, 5, 5, 3, 4, 2, 9, 5, 3, 2, 7, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2020

Keywords

Comments

First differs from A181796 at a(180) = 9, A181796(180) = 10.
First differs from A335549 at a(90) = 7, A335549(90) = 8.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to contiguously match a pattern P if there is a contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) contiguously matches (1,1,2) and (2,1,1) but not (2,1,2), (1,2,1), (1,2,2), or (2,2,1).

Examples

			The a(n) patterns for n = 2, 30, 12, 60, 120, 540, 1500:
  ()   ()     ()     ()      ()       ()        ()
  (1)  (1)    (1)    (1)     (1)      (1)       (1)
       (12)   (11)   (11)    (11)     (11)      (11)
       (123)  (12)   (12)    (12)     (12)      (12)
              (112)  (112)   (111)    (111)     (111)
                     (123)   (112)    (112)     (112)
                     (1123)  (123)    (122)     (122)
                             (1112)   (1112)    (123)
                             (1123)   (1122)    (1123)
                             (11123)  (1222)    (1222)
                                      (11222)   (1233)
                                      (12223)   (11233)
                                      (112223)  (12333)
                                                (112333)
		

Crossrefs

The version for standard compositions is A335458.
The not necessarily contiguous version is A335549.
Patterns are counted by A000670 and ranked by A333217.
A number's prime indices are given in the rows of A112798.
Contiguous subsequences of standard compositions are A124771.
Contiguous sub-partitions of prime indices are counted by A335519.
Minimal avoided patterns of prime indices are counted by A335550.
Patterns contiguously matched by partitions are counted by A335838.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Length[Union[mstype/@ReplaceList[primeMS[n],{_,s___,_}:>{s}]]],{n,100}]

A335838 Number of normal patterns contiguously matched by integer partitions of n.

Original entry on oeis.org

1, 2, 5, 9, 18, 31, 54, 89, 145, 225, 349, 524, 778, 1137, 1645, 2330, 3293, 4586, 6341, 8676, 11794, 15880, 21292, 28298, 37419, 49163, 64301, 83576, 108191, 139326, 178699, 228183, 290286, 367760, 464374, 584146, 732481, 915468, 1140773, 1417115, 1755578
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2020

Keywords

Comments

We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to contiguously match a pattern P if there is a contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) contiguously matches (1,1,2) and (2,1,1) but not (2,1,2), (1,2,1), (1,2,2), or (2,2,1).

Examples

			The patterns contiguously matched by (3,2,2,1) are: (), (1), (1,1), (2,1), (2,1,1), (2,2,1), (3,2,2,1). Note that (3,2,1) is not contiguously matched. See A335837 for a larger example.
		

Crossrefs

The version for compositions in standard order is A335474.
The version for compositions is A335457.
The not necessarily contiguous version is A335837.
Patterns are counted by A000670 and ranked by A333217.
Patterns contiguously matched by prime indices are counted by A335516.
Contiguous divisors are counted by A335519.
Minimal patterns avoided by prime indices are counted by A335550.

Programs

  • Mathematica
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Sum[Length[Union[mstype/@ReplaceList[y,{_,s___,_}:>{s}]]],{y,IntegerPartitions[n]}],{n,0,8}]

Extensions

More terms from Jinyuan Wang, Jun 27 2020

A335837 Number of normal patterns matched by integer partitions of n.

Original entry on oeis.org

1, 2, 5, 9, 18, 31, 54, 89, 146, 228, 358, 545, 821, 1219, 1795, 2596, 3741, 5323, 7521, 10534, 14659, 20232, 27788, 37897, 51410, 69347, 93111, 124348, 165378, 218924, 288646, 379021, 495864, 646272, 839490, 1086693, 1402268, 1803786, 2313498, 2958530, 3773093
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2020

Keywords

Comments

We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(0) = 1 through a(4) = 18  pairs of a partition with a matched pattern:
  ()/()  (1)/()   (2)/()     (3)/()       (4)/()
         (1)/(1)  (2)/(1)    (3)/(1)      (4)/(1)
                  (11)/()    (21)/()      (31)/()
                  (11)/(1)   (21)/(1)     (31)/(1)
                  (11)/(11)  (21)/(21)    (31)/(21)
                             (111)/()     (22)/()
                             (111)/(1)    (22)/(1)
                             (111)/(11)   (22)/(11)
                             (111)/(111)  (211)/()
                                          (211)/(1)
                                          (211)/(11)
                                          (211)/(21)
                                          (211)/(211)
                                          (1111)/()
                                          (1111)/(1)
                                          (1111)/(11)
                                          (1111)/(111)
                                          (1111)/(1111)
		

Crossrefs

The version for compositions in standard order is A335454.
The version for compositions is A335456.
The version for Heinz numbers of partitions is A335549.
The contiguous case is A335838.
Patterns are counted by A000670 and ranked by A333217.
Patterns contiguously matched by prime indices are A335516.
Contiguous divisors are counted by A335519.
Minimal patterns avoided by prime indices are counted by A335550.

Programs

  • Mathematica
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Sum[Length[Union[mstype/@Subsets[y]]],{y,IntegerPartitions[n]}],{n,0,8}]
  • PARI
    lista(n) = {
      my(v=vector(n+1,i,1+x*O(x^n)));
      for(k=1,n,
        v=vector(n\(k+1)+1,i,
            (1-x^(i*k))/(1-x^k)*v[i] + sum(j=i,n\k,x^(j*k)*v[j+1]) +
            x^(k*i)/(1-x^k)^2*v[1] ) );
      Vec(v[1]) } \\ Christian Sievers, May 08 2025

Extensions

a(18) corrected by and a(19)-a(22) from Jinyuan Wang, Jun 27 2020
More terms from Christian Sievers, May 08 2025
Showing 1-5 of 5 results.