cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A325781 Heinz numbers of complete integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 80, 84, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 160, 162, 168, 176, 180, 192, 198, 200, 210, 216, 220, 224, 234, 240, 252, 256, 260, 264, 270, 280, 288, 294, 300
Offset: 1

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The sum of prime indices of n is A056239(n). A number is in this sequence iff its divisors have sums of prime indices covering an initial interval of nonnegative integers. For example, the divisors of 60 are {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}, with respective sums of prime indices {0, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7}, so 60 is in the sequence.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     6: {1,2}
     8: {1,1,1}
    12: {1,1,2}
    16: {1,1,1,1}
    18: {1,2,2}
    20: {1,1,3}
    24: {1,1,1,2}
    30: {1,2,3}
    32: {1,1,1,1,1}
    36: {1,1,2,2}
    40: {1,1,1,3}
    42: {1,2,4}
    48: {1,1,1,1,2}
    54: {1,2,2,2}
    56: {1,1,1,4}
    60: {1,1,2,3}
    64: {1,1,1,1,1,1}
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Select[Range[1000],normQ[hwt/@Rest[Divisors[#]]]&]

A333224 Number of distinct positive consecutive subsequence-sums of the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 3, 1, 3, 2, 4, 3, 4, 4, 4, 1, 3, 3, 5, 3, 5, 4, 5, 3, 4, 5, 5, 5, 5, 5, 5, 1, 3, 3, 5, 2, 5, 5, 6, 3, 6, 3, 6, 5, 6, 5, 6, 3, 4, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 1, 3, 3, 5, 3, 6, 6, 7, 3, 5, 5, 7, 4, 6, 6, 7, 3, 6, 4, 7, 5, 7, 6
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The composition (4,3,1,2) has positive subsequence-sums 1, 2, 3, 4, 6, 7, 8, 10, so a(550) = 8.
		

Crossrefs

Dominated by A124770.
Compositions where every subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and A325592 and ranked by A299702.
Strict knapsack partitions are counted by A275972 and ranked by A059519 and A301899.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.
Allowing empty subsequences gives A333257.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s__,_}:>Plus[s]]]],{n,0,100}]

Formula

a(n) = A333257(n) - 1.

A124771 Number of distinct subsequences for compositions in standard order.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 4, 4, 2, 4, 3, 6, 4, 6, 6, 5, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 9, 6, 9, 8, 6, 2, 4, 4, 6, 3, 7, 7, 8, 4, 7, 4, 9, 7, 8, 9, 10, 4, 6, 7, 9, 7, 9, 8, 12, 6, 9, 9, 12, 8, 12, 10, 7, 2, 4, 4, 6, 4, 7, 7, 8, 4, 6, 6, 10, 6, 10, 10, 10, 4, 7, 6, 10, 6, 8, 9, 12, 7, 10, 9, 12, 10, 12, 12, 12, 4
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
From Vladimir Shevelev, Dec 18 2013: (Start)
Every number in binary is a concatenation of parts of the form 10...0 with k>=0 zeros. For example, 5=(10)(1), 11=(10)(1)(1), 7=(1)(1)(1). We call d>0 a c-divisor of m, if d consists of some consecutive parts of m taking from the left to the right. Note that, to d=0 corresponds an empty set of parts. So it is natural to consider 0 as a c-divisor of every m. For example, 5=(10)(1) is a divisor of 23=(10)(1)(1)(1). Analogously, 1,2,3,7,11,23 are c-divisors of 23. But 6=(1)(10) is not a c-divisor of 23.
One can prove a one-to-one correspondence between distinct subsequences for composition no. n in standard order and c-divisors of n. So, the sequence lists also numbers of c-divisors of nonnegative integers.
(End)
These are contiguous subsequences, or restrictions to a subinterval. The case for all subsequences is A334299. - Gus Wiseman, Jun 02 2020

Examples

			Composition number 11 is 2,1,1; the subsequences are (empty); 1; 2; 1,1; 2,1; 2,1,1; so a(11) = 6.
The table starts:
1
2
1 2
1 3 3 3
Let n=11=(10)(1)(1). We have the following c-divisors of 11: 0,1,2,3,5,11. Thus a(11)=6. Note, that 3=(1)(1) is not a c-divisor of 13=(1)(10)(1) since, although it contains parts of 3=(1)(1), but in non-consecutive order. The c-divisors of 13 are 0,1,2,5,6,13. So, a(13)=6.
From _Gus Wiseman_, Jun 01 2020: (Start)
The c-divisors of n are given in column n below:
  0  0  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0
     1  2  1  4  1  1  1  8  1  2   1   1   1   1   1   16  1   2
           3     2  2  3     4  10  2   4   2   2   3       8   4
                 5  6  7     9      3   12  5   3   7       17  18
                                    5       6   6   15
                                    11      13  14
(End)
		

Crossrefs

Cf. A000005, A011782 (row lengths), A066099, A114994, A233249, A233312.
Not allowing empty subsequences gives A124770.
Dominates A333257.
The case for not just contiguous subsequences is A334299.
Positions of first appearances are A335279.
Compositions where every subinterval has a different sum are A333222.
Knapsack compositions are A333223.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s___,_}:>{s}]]],{n,0,100}] (* Gus Wiseman, Jun 01 2020 *)

Formula

a(n) = A124770(n) + 1.
From Vladimir Shevelev, Dec 18 2013: (Start)
a(2^n) = 2. Note that in concatenation representations of integers in binary, numbers {2^k}, k>=0, play the role of primes. So the formula is an analog of A000005(prime(n))=2.
a(2^n-1) = n+1; for n>=2, a(2^n+1) = 4.
For c-equivalent numbers n_1 and n_2 (i.e., differed only by order of parts) we have a(n_1) = a(n_2). For example, a(24)=a(17)=4. If the canonical representation of n is n=(1)^k_1[*](10)^k_2[*](100)^k_3[*]... , where [*] denotes operation of concatenation (cf. A233569), then a(n)<=(k_1+1)*(k_2+1)*...
(End)

A333257 Number of distinct consecutive subsequence-sums of the k-th composition in standard order.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 4, 4, 2, 4, 3, 5, 4, 5, 5, 5, 2, 4, 4, 6, 4, 6, 5, 6, 4, 5, 6, 6, 6, 6, 6, 6, 2, 4, 4, 6, 3, 6, 6, 7, 4, 7, 4, 7, 6, 7, 6, 7, 4, 5, 7, 7, 6, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 2, 4, 4, 6, 4, 7, 7, 8, 4, 6, 6, 8, 5, 7, 7, 8, 4, 7, 5, 8, 6, 8, 7
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The ninth composition in standard order is (3,1), which has consecutive subsequences (), (1), (3), (3,1), with sums 0, 1, 3, 4, so a(9) = 4.
		

Crossrefs

Dominated by A124771.
Compositions where every subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222, while the case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and ranked by A299702.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223.
The version for Heinz numbers of partitions is A325770.
Not allowing empty subsequences gives A333224.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s___,_}:>Plus[s]]]],{n,0,100}]

Formula

a(n) = A333224(n) + 1.

A333223 Numbers k such that every distinct consecutive subsequence of the k-th composition in standard order has a different sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 20, 21, 24, 26, 28, 31, 32, 33, 34, 35, 36, 40, 41, 42, 48, 50, 56, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 80, 81, 84, 85, 88, 96, 98, 100, 104, 106, 112, 120, 127, 128, 129, 130, 131, 132, 133
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The list of terms together with the corresponding compositions begins:
    0: ()            21: (2,2,1)           65: (6,1)
    1: (1)           24: (1,4)             66: (5,2)
    2: (2)           26: (1,2,2)           67: (5,1,1)
    3: (1,1)         28: (1,1,3)           68: (4,3)
    4: (3)           31: (1,1,1,1,1)       69: (4,2,1)
    5: (2,1)         32: (6)               70: (4,1,2)
    6: (1,2)         33: (5,1)             71: (4,1,1,1)
    7: (1,1,1)       34: (4,2)             72: (3,4)
    8: (4)           35: (4,1,1)           73: (3,3,1)
    9: (3,1)         36: (3,3)             74: (3,2,2)
   10: (2,2)         40: (2,4)             80: (2,5)
   12: (1,3)         41: (2,3,1)           81: (2,4,1)
   15: (1,1,1,1)     42: (2,2,2)           84: (2,2,3)
   16: (5)           48: (1,5)             85: (2,2,2,1)
   17: (4,1)         50: (1,3,2)           88: (2,1,4)
   18: (3,2)         56: (1,1,4)           96: (1,6)
   19: (3,1,1)       63: (1,1,1,1,1,1)     98: (1,4,2)
   20: (2,3)         64: (7)              100: (1,3,3)
		

Crossrefs

Distinct subsequences are counted by A124770 and A124771.
A superset of A333222, counted by A169942, with partition case A325768.
These compositions are counted by A325676.
A version for partitions is A325769, with Heinz numbers A325778.
The number of distinct positive subsequence-sums is A333224.
The number of distinct subsequence-sums is A333257.
Numbers whose binary indices are a strict knapsack partition are A059519.
Knapsack partitions are counted by A108917, with strict case A275972.
Golomb subsets are counted by A143823.
Heinz numbers of knapsack partitions are A299702.
Maximal Golomb rulers are counted by A325683.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Total/@Union[ReplaceList[stc[#],{_,s__,_}:>{s}]]&]

A347460 Number of distinct possible alternating products of factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 5, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120:
  1  4  8    12   24   30    36   48    60    120
     1  2    3    6    10/3  9    12    15    30
        1/2  3/4  8/3  5/6   4    16/3  20/3  40/3
             1/3  2/3  3/10  1    3     15/4  15/2
                  3/8  2/15  4/9  3/4   12/5  24/5
                  1/6        1/4  1/3   3/5   10/3
                             1/9  3/16  5/12  5/6
                                  1/12  4/15  8/15
                                        3/20  3/10
                                        1/15  5/24
                                              2/15
                                              3/40
                                              1/30
		

Crossrefs

Positions of 1's are 1 and A000040.
Positions of 2's appear to be A001358.
Positions of 3's appear to be A030078.
Dominates A038548, the version for reverse-alternating product.
Counting only integers gives A046951.
The even-length case is A072670.
The version for partitions (not factorizations) is A347461, reverse A347462.
The odd-length case is A347708.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A276024 counts distinct positive subset-sums of partitions, strict A284640.
A292886 counts knapsack factorizations, by sum A293627.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@facs[n]]],{n,100}]

A334968 Number of possible sums of subsequences (not necessarily contiguous) of the n-th composition in standard order (A066099).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 4, 4, 2, 4, 3, 5, 4, 5, 5, 5, 2, 4, 4, 6, 4, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 2, 4, 4, 6, 3, 7, 7, 7, 4, 7, 4, 7, 7, 7, 7, 7, 4, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 2, 4, 4, 6, 4, 8, 8, 8, 4, 6, 6, 8, 6, 8, 8, 8, 4, 8, 6, 8, 6, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 139th composition is (4,2,1,1), with possible sums of subsequences {0,1,2,3,4,5,6,7,8}, so a(139) = 9.
Triangle begins:
  1
  2
  2 3
  2 4 4 4
  2 4 3 5 4 5 5 5
  2 4 4 6 4 6 6 6 4 6 6 6 6 6 6 6
  2 4 4 6 3 7 7 7 4 7 4 7 7 7 7 7 4 6 7 7 7 7 7 7 6 7 7 7 7 7 7 7
		

Crossrefs

Row lengths are A011782.
Dominated by A124771 (number of contiguous subsequences).
Dominates A333257 (the contiguous case).
Dominated by A334299 (number of subsequences).
Golomb rulers are counted by A169942 and ranked by A333222.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and ranked by A299702
Knapsack compositions are counted by A325676 and ranked by A333223.
Contiguous subsequence-sums are counted by A333224 and ranked by A333257.
Knapsack compositions are counted by A334268 and ranked by A334967.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Subsets[stc[n]]]],{n,0,100}]

Formula

a(n) = A299701(A333219(n)).

A124770 Number of distinct nonempty subsequences for compositions in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 3, 1, 3, 2, 5, 3, 5, 5, 4, 1, 3, 3, 5, 3, 5, 5, 7, 3, 5, 5, 8, 5, 8, 7, 5, 1, 3, 3, 5, 2, 6, 6, 7, 3, 6, 3, 8, 6, 7, 8, 9, 3, 5, 6, 8, 6, 8, 7, 11, 5, 8, 8, 11, 7, 11, 9, 6, 1, 3, 3, 5, 3, 6, 6, 7, 3, 5, 5, 9, 5, 9, 9, 9, 3, 6, 5, 9, 5, 7, 8, 11, 6, 9, 8, 11, 9, 11, 11, 11, 3, 5, 6, 8, 5, 9
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. - Gus Wiseman, Apr 03 2020

Examples

			Composition number 11 is 2,1,1; the nonempty subsequences are 1; 2; 1,1; 2,1; 2,1,1; so a(11) = 5.
The table starts:
  0
  1
  1 2
  1 3 3 3
  1 3 2 5 3 5 5 4
  1 3 3 5 3 5 5 7 3 5 5 8 5 8 7 5
From _Gus Wiseman_, Apr 03 2020: (Start)
If the k-th composition in standard order is c, then we say that the STC-number of c is k. The STC-numbers of the distinct subsequences of the composition with STC-number k are given in column k below:
  1  2  1  4  1  1  1  8  1  2   1   1   1   1   1   16  1   2   1   2
        3     2  2  3     4  10  2   4   2   2   3       8   4   4   4
              5  6  7     9      3   12  6   3   7       17  18  3   20
                                 5       5   6   15              9
                                 11      13  14                  19
(End)
		

Crossrefs

Row lengths are A011782.
Allowing empty subsequences gives A124771.
Dominates A333224, the version counting subsequence-sums instead of subsequences.
Compositions where every restriction to a subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s__,_}:>{s}]]],{n,0,100}] (* Gus Wiseman, Apr 03 2020 *)

Formula

a(n) = A124771(n) - 1. - Gus Wiseman, Apr 03 2020

A325769 Number of integer partitions of n whose distinct consecutive subsequences have different sums.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 11, 12, 17, 19, 29, 28, 41, 42, 62, 61, 88, 87, 123, 121, 168, 164, 234, 225, 306, 306, 411, 401, 527, 533, 700, 689, 894, 885, 1163, 1150, 1452, 1469, 1866, 1835, 2333, 2346, 2913, 2913, 3638, 3619, 4511, 4537, 5497, 5576, 6859, 6827, 8263
Offset: 0

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

For example (3,3,1,1) is counted under a(8) because it has distinct consecutive subsequences (), (1), (1,1), (3), (3,1), (3,1,1), (3,3), (3,3,1), (3,3,1,1), all of which have different sums.
The Heinz numbers of these partitions are given by A325778.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (311)    (222)     (322)      (71)
                            (11111)  (411)     (331)      (332)
                                     (111111)  (421)      (521)
                                               (511)      (611)
                                               (2221)     (2222)
                                               (4111)     (3311)
                                               (1111111)  (5111)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]&]],{n,0,30}]

Extensions

a(41)-a(53) from Fausto A. C. Cariboni, Feb 24 2021

A325778 Heinz numbers of integer partitions whose distinct consecutive subsequences have different sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

First differs from A299702 in having 462.
The enumeration of these partitions by sum is given by A325769.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
  12: {1,1,2}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  60: {1,1,2,3}
  63: {2,2,4}
  70: {1,3,4}
  72: {1,1,1,2,2}
  80: {1,1,1,1,3}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{_,s__,_}:>{s}]]&]
Showing 1-10 of 20 results. Next