cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A333224 Number of distinct positive consecutive subsequence-sums of the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 3, 1, 3, 2, 4, 3, 4, 4, 4, 1, 3, 3, 5, 3, 5, 4, 5, 3, 4, 5, 5, 5, 5, 5, 5, 1, 3, 3, 5, 2, 5, 5, 6, 3, 6, 3, 6, 5, 6, 5, 6, 3, 4, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 1, 3, 3, 5, 3, 6, 6, 7, 3, 5, 5, 7, 4, 6, 6, 7, 3, 6, 4, 7, 5, 7, 6
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The composition (4,3,1,2) has positive subsequence-sums 1, 2, 3, 4, 6, 7, 8, 10, so a(550) = 8.
		

Crossrefs

Dominated by A124770.
Compositions where every subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and A325592 and ranked by A299702.
Strict knapsack partitions are counted by A275972 and ranked by A059519 and A301899.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.
Allowing empty subsequences gives A333257.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s__,_}:>Plus[s]]]],{n,0,100}]

Formula

a(n) = A333257(n) - 1.

A333223 Numbers k such that every distinct consecutive subsequence of the k-th composition in standard order has a different sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 20, 21, 24, 26, 28, 31, 32, 33, 34, 35, 36, 40, 41, 42, 48, 50, 56, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 80, 81, 84, 85, 88, 96, 98, 100, 104, 106, 112, 120, 127, 128, 129, 130, 131, 132, 133
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The list of terms together with the corresponding compositions begins:
    0: ()            21: (2,2,1)           65: (6,1)
    1: (1)           24: (1,4)             66: (5,2)
    2: (2)           26: (1,2,2)           67: (5,1,1)
    3: (1,1)         28: (1,1,3)           68: (4,3)
    4: (3)           31: (1,1,1,1,1)       69: (4,2,1)
    5: (2,1)         32: (6)               70: (4,1,2)
    6: (1,2)         33: (5,1)             71: (4,1,1,1)
    7: (1,1,1)       34: (4,2)             72: (3,4)
    8: (4)           35: (4,1,1)           73: (3,3,1)
    9: (3,1)         36: (3,3)             74: (3,2,2)
   10: (2,2)         40: (2,4)             80: (2,5)
   12: (1,3)         41: (2,3,1)           81: (2,4,1)
   15: (1,1,1,1)     42: (2,2,2)           84: (2,2,3)
   16: (5)           48: (1,5)             85: (2,2,2,1)
   17: (4,1)         50: (1,3,2)           88: (2,1,4)
   18: (3,2)         56: (1,1,4)           96: (1,6)
   19: (3,1,1)       63: (1,1,1,1,1,1)     98: (1,4,2)
   20: (2,3)         64: (7)              100: (1,3,3)
		

Crossrefs

Distinct subsequences are counted by A124770 and A124771.
A superset of A333222, counted by A169942, with partition case A325768.
These compositions are counted by A325676.
A version for partitions is A325769, with Heinz numbers A325778.
The number of distinct positive subsequence-sums is A333224.
The number of distinct subsequence-sums is A333257.
Numbers whose binary indices are a strict knapsack partition are A059519.
Knapsack partitions are counted by A108917, with strict case A275972.
Golomb subsets are counted by A143823.
Heinz numbers of knapsack partitions are A299702.
Maximal Golomb rulers are counted by A325683.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Total/@Union[ReplaceList[stc[#],{_,s__,_}:>{s}]]&]

A325768 Number of integer partitions of n for which every restriction to a subinterval has a different sum.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 12, 15, 15, 23, 22, 29, 32, 40, 42, 55, 56, 71, 75, 92, 100, 124, 128, 152, 167, 198, 212, 255, 269, 315, 343, 392, 428, 501, 529, 615, 665, 757, 812, 937, 1002, 1142, 1238, 1385, 1490, 1701, 1808, 2038, 2200, 2476
Offset: 0

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

Also the number of Golomb rulers of length n whose consecutive marks are separated by weakly decreasing distances.
The Heinz numbers of these partitions are given by A325779.

Examples

			The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)
                        (41)  (51)  (52)   (62)   (63)
                                    (61)   (71)   (72)
                                    (421)  (521)  (81)
                                                  (432)
                                                  (531)
                                                  (621)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,0,30}]

A325770 Number of distinct nonempty contiguous subsequences of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 6, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 9, 1, 3, 5, 6, 3, 6, 1, 5, 3, 6, 1, 11, 1, 3, 5, 5, 3, 6, 1, 9, 4, 3, 1, 9, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

After a(1) = 0, first differs from A305611 at a(42) = 6, A305611(42) = 7.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(84) = 9 distinct nonempty contiguous subsequences of (4,2,1,1) are (1), (2), (4), (1,1), (2,1), (4,2), (2,1,1), (4,2,1), (4,2,1,1).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[ReplaceList[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],{_,s__,_}:>{s}]]],{n,30}]

Formula

a(n) = A335519(n) - 1.

Extensions

Name corrected by Gus Wiseman, Jun 27 2020

A334968 Number of possible sums of subsequences (not necessarily contiguous) of the n-th composition in standard order (A066099).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 4, 4, 2, 4, 3, 5, 4, 5, 5, 5, 2, 4, 4, 6, 4, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 2, 4, 4, 6, 3, 7, 7, 7, 4, 7, 4, 7, 7, 7, 7, 7, 4, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 2, 4, 4, 6, 4, 8, 8, 8, 4, 6, 6, 8, 6, 8, 8, 8, 4, 8, 6, 8, 6, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 139th composition is (4,2,1,1), with possible sums of subsequences {0,1,2,3,4,5,6,7,8}, so a(139) = 9.
Triangle begins:
  1
  2
  2 3
  2 4 4 4
  2 4 3 5 4 5 5 5
  2 4 4 6 4 6 6 6 4 6 6 6 6 6 6 6
  2 4 4 6 3 7 7 7 4 7 4 7 7 7 7 7 4 6 7 7 7 7 7 7 6 7 7 7 7 7 7 7
		

Crossrefs

Row lengths are A011782.
Dominated by A124771 (number of contiguous subsequences).
Dominates A333257 (the contiguous case).
Dominated by A334299 (number of subsequences).
Golomb rulers are counted by A169942 and ranked by A333222.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and ranked by A299702
Knapsack compositions are counted by A325676 and ranked by A333223.
Contiguous subsequence-sums are counted by A333224 and ranked by A333257.
Knapsack compositions are counted by A334268 and ranked by A334967.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Subsets[stc[n]]]],{n,0,100}]

Formula

a(n) = A299701(A333219(n)).

A124770 Number of distinct nonempty subsequences for compositions in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 3, 1, 3, 2, 5, 3, 5, 5, 4, 1, 3, 3, 5, 3, 5, 5, 7, 3, 5, 5, 8, 5, 8, 7, 5, 1, 3, 3, 5, 2, 6, 6, 7, 3, 6, 3, 8, 6, 7, 8, 9, 3, 5, 6, 8, 6, 8, 7, 11, 5, 8, 8, 11, 7, 11, 9, 6, 1, 3, 3, 5, 3, 6, 6, 7, 3, 5, 5, 9, 5, 9, 9, 9, 3, 6, 5, 9, 5, 7, 8, 11, 6, 9, 8, 11, 9, 11, 11, 11, 3, 5, 6, 8, 5, 9
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. - Gus Wiseman, Apr 03 2020

Examples

			Composition number 11 is 2,1,1; the nonempty subsequences are 1; 2; 1,1; 2,1; 2,1,1; so a(11) = 5.
The table starts:
  0
  1
  1 2
  1 3 3 3
  1 3 2 5 3 5 5 4
  1 3 3 5 3 5 5 7 3 5 5 8 5 8 7 5
From _Gus Wiseman_, Apr 03 2020: (Start)
If the k-th composition in standard order is c, then we say that the STC-number of c is k. The STC-numbers of the distinct subsequences of the composition with STC-number k are given in column k below:
  1  2  1  4  1  1  1  8  1  2   1   1   1   1   1   16  1   2   1   2
        3     2  2  3     4  10  2   4   2   2   3       8   4   4   4
              5  6  7     9      3   12  6   3   7       17  18  3   20
                                 5       5   6   15              9
                                 11      13  14                  19
(End)
		

Crossrefs

Row lengths are A011782.
Allowing empty subsequences gives A124771.
Dominates A333224, the version counting subsequence-sums instead of subsequences.
Compositions where every restriction to a subinterval has a different sum are counted by A169942 and A325677 and ranked by A333222. The case of partitions is counted by A325768 and ranked by A325779.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack compositions are counted by A325676 and A325687 and ranked by A333223. The case of partitions is counted by A325769 and ranked by A325778, for which the number of distinct consecutive subsequences is given by A325770.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[ReplaceList[stc[n],{_,s__,_}:>{s}]]],{n,0,100}] (* Gus Wiseman, Apr 03 2020 *)

Formula

a(n) = A124771(n) - 1. - Gus Wiseman, Apr 03 2020

A325778 Heinz numbers of integer partitions whose distinct consecutive subsequences have different sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

First differs from A299702 in having 462.
The enumeration of these partitions by sum is given by A325769.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
  12: {1,1,2}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  60: {1,1,2,3}
  63: {2,2,4}
  70: {1,3,4}
  72: {1,1,1,2,2}
  80: {1,1,1,1,3}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Total/@Union[ReplaceList[primeMS[#],{_,s__,_}:>{s}]]&]

A325779 Heinz numbers of integer partitions for which every restriction to a subinterval has a different sum.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107
Offset: 1

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

First differs from A301899 in having 462.
The enumeration of these partitions by sum is given by A325768.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   49: {4,4}
   50: {1,3,3}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@ReplaceList[primeMS[#],{_,s__,_}:>Plus[s]]&]

A334967 Numbers k such that the every subsequence (not necessarily contiguous) of the k-th composition in standard order (A066099) has a different sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 20, 21, 24, 26, 28, 31, 32, 33, 34, 35, 36, 40, 42, 48, 56, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 80, 81, 84, 85, 88, 96, 98, 100, 104, 106, 112, 120, 127, 128, 129, 130, 131, 132, 133, 134
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2020

Keywords

Comments

First differs from A333223 in lacking 41.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   0: ()           18: (3,2)          48: (1,5)
   1: (1)          19: (3,1,1)        56: (1,1,4)
   2: (2)          20: (2,3)          63: (1,1,1,1,1,1)
   3: (1,1)        21: (2,2,1)        64: (7)
   4: (3)          24: (1,4)          65: (6,1)
   5: (2,1)        26: (1,2,2)        66: (5,2)
   6: (1,2)        28: (1,1,3)        67: (5,1,1)
   7: (1,1,1)      31: (1,1,1,1,1)    68: (4,3)
   8: (4)          32: (6)            69: (4,2,1)
   9: (3,1)        33: (5,1)          70: (4,1,2)
  10: (2,2)        34: (4,2)          71: (4,1,1,1)
  12: (1,3)        35: (4,1,1)        72: (3,4)
  15: (1,1,1,1)    36: (3,3)          73: (3,3,1)
  16: (5)          40: (2,4)          74: (3,2,2)
  17: (4,1)        42: (2,2,2)        80: (2,5)
		

Crossrefs

These compositions are counted by A334268.
Golomb rulers are counted by A169942 and ranked by A333222.
Positive subset-sums of partitions are counted by A276024 and A299701.
Knapsack partitions are counted by A108917 and ranked by A299702
Knapsack compositions are counted by A325676 and ranked by A333223.
The case of partitions is counted by A325769 and ranked by A325778.
Contiguous subsequence-sums are counted by A333224 and ranked by A333257.
Number of (not necessarily contiguous) subsequences is A334299.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Total/@Union[Subsets[stc[#]]]&]

A325765 Number of integer partitions of n with a unique consecutive subsequence summing to every positive integer from 1 to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 7, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3
Offset: 0

Views

Author

Gus Wiseman, May 20 2019

Keywords

Comments

After a(0) = 1, same as A032741(n + 1) (number of proper divisors of n + 1).
The Heinz numbers of these partitions are given by A325764.

Examples

			The a(1) = 1 through a(13) = 3 partitions:
  (1)  (11)  (21)   (1111)  (221)    (111111)  (2221)     (3311)
             (111)          (311)              (4111)     (11111111)
                            (11111)            (1111111)
.
  (22221)      (1111111111)  (33311)        (111111111111)  (2222221)
  (51111)                    (44111)                        (7111111)
  (111111111)                (222221)                       (1111111111111)
                             (611111)
                             (11111111111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[IntegerPartitions[n],normQ[Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]]&&UnsameQ@@Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]&]],{n,0,20}]
Showing 1-10 of 13 results. Next