cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A180167 a(0) = 1, a(1) = 7; a(n)= 6*a(n-1) + 6*a(n-2) for n>1.

Original entry on oeis.org

1, 7, 48, 330, 2268, 15588, 107136, 736344, 5060880, 34783344, 239065344, 1643092128, 11292944832, 77616221760, 533454999552, 3666427327872, 25199293964544, 173194327754496, 1190361730314240, 8181336348412416, 56230188472359936, 386469148924634112
Offset: 0

Views

Author

Gary W. Adamson, Aug 14 2010

Keywords

Examples

			a(4) = 2268 = 6*a(3) + 6*a(2) = 6*330 + 6*48.
Using the INVERT transform operation, a(3) = 330 = (205, 35, 6, 1) dot
(1, 1, 7, 48) = (205 + 35 + 42 + 48), where (1, 6, 35, 205, 1200, ...) = A180033.
G.f. = 1 + 7*x + 48*x^2 + 330*x^3 + 2268*x^4 + 15588*x^5 + 107136*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - 6 x - 6 x^2), {x, 0, 21}], x] (* Michael De Vlieger, Dec 16 2021 *)
  • PARI
    Vec((1 + x)/(1 - 6*x - 6*x^2) + O(x^50)) \\ Colin Barker, May 13 2016

Formula

G.f.: (1 + x)/(1 - 6*x - 6*x^2); = INVERT transform of A180033
a(n) = ((3-sqrt(15))^n*(-4+sqrt(15))+(3+sqrt(15))^n*(4+sqrt(15)))/(2*sqrt(15)). - Alexander R. Povolotsky, Aug 22 2010, corrected by Colin Barker, May 13 2016
a(n) = A057089(n) + A057089(n-1). - R. J. Mathar, Apr 04 2012
E.g.f.: (4*sqrt(15)*sinh(sqrt(15)*x) + 15*cosh(sqrt(15)*x))*exp(3*x)/15. - Ilya Gutkovskiy, May 13 2016

A199324 Triangle T(n,k), read by rows, given by (-1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 1, -1, -1, 1, -1, 3, -2, -1, 1, 0, -2, 5, -3, -1, 1, 1, -2, -2, 7, -4, -1, 1, -1, 5, -7, -1, 9, -5, -1, 1, 0, -3, 12, -15, 1, 11, -6, -1, 1, 1, -3, -3, 21, -26, 4, 13, -7, -1, 1, -1, 7, -15, 3, 31, -40, 8, 15, -8, -1, 1, 0, -4, 22, -42
Offset: 0

Views

Author

Philippe Deléham, Nov 12 2011

Keywords

Examples

			Triangle begins :
1
-1, 1
0, -1, 1
1, -1, -1, 1
-1, 3, -2, -1, 1
0, -2, 5, -3, -1, 1
1, -2, -2, 7, -4, -1, 1
-1, 5, -7, -1, 9, -5, -1, 1
		

Crossrefs

Cf. A026729, A063967, A129267, A176971 (diagonals sums).

Formula

T(n,k)=T(n-1,k-1)+T(n-2,k-1)-T(n-1,k)-T(n-2,k), T(0,0)=1.
G.f.: 1/(1-(y-1)*x-(y-1)*x^2).
Sum_{k, 0<=k<=n}T(n,k)*x^k = A000748(n), A108520(n), A049347(n), A000007(n), A000045(n+1), A002605(n+1), A030195(n+1), A057087(n), A057088(n), A057089(n), A057090(n), A057091(n), A057092(n), A057093(n) for x = -2,-1,0,1,2,3,4,5,6,7,8,9,10,11 respectively.

A125250 Square array, read by antidiagonals, where A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 3, 11, 3, 0, 0, 0, 0, 0, 0, 1, 13, 13, 1, 0, 0, 0, 0, 0, 0, 0, 9, 26, 9, 0, 0, 0, 0, 0, 0, 0, 0, 4, 32, 32, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 26, 63, 26, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 80, 80, 14, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gerald McGarvey, Jan 15 2007

Keywords

Comments

It appears that the main diagonal (1,1,2,5,11,...) is A051286 (Whitney number of level n of the lattice of the ideals of the fence of size 2 n) that the diagonals (0,1,2,5,13,...) adjacent to the main diagonal are A110320 (Number of blocks in all RNA secondary structures with n nodes) and that the n-th antidiagonal sum = A094686(n-1) (a Fibonacci convolution). The n-th row sum = A002605(n).

Examples

			Array starts as:
1 0 0 0  0  0  0 ...
0 1 1 0  0  0  0 ...
0 1 2 2  1  0  0 ...
0 0 2 5  5  3  1   0 ...
0 0 1 5 11 13  9   4   1   0...
0 0 0 3 13 26 32  26  14   5   1  0 ...
0 0 0 1  9 32 63  80  71  45  20  6  1 0 ...
0 0 0 0  4 26 80 153 201 191 135 71 27 7 1 0 ...
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[i, n-i] Binomial[i, k-i], {i, Floor[(n+1)/2], k}];
    Table[T[n-k, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 12 2019 *)
  • PARI
    A=matrix(22,22);A[1,1]=1;A[2,2]=1;A[2,1]=0;A[1,2]=0;A[3,2]=1;A[2,3]=1; for(n=3,22,for(k=3,22,A[n,k]=A[n-2,k-2]+A[n-1,k-2]+A[n-2,k-1]+A[n-1,k-1])); for(n=1,22,for(i=1,n,print1(A[n-i+1,i],", ")))

Formula

A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).
From Peter Bala, Nov 07 2017: (Start)
T(n,k) = Sum_{i = floor((n+1)/2)..k} binomial(i,n-i)* binomial(i,k-i).
Square array = A026729 * transpose(A026729), where A026729 is viewed as a lower unit triangular array. Omitting the first row and column of square array = A030528 * transpose(A030528).
O.g.f. 1/(1 - t*(1 + t)*x - t*(1 + t)*x^2) = 1 + (t + t^2)*x + (t + 2*t^2 + 2*t^3 + t^4)*x^2 + .... Cf. A109466 with o.g.f. 1/(1 - t*x - t*x^2).
The n-th row polynomial R(n,t) satisfies R(n,t) = R(n,-1 - t).
R(n,t) = (-1)^n*sqrt(-t*(1 + t))^n*U(n, 1/2*sqrt(-t*(1 + t))), where U(n,x) denotes the n-th Chebyshev polynomial of the second kind.
The sequence of row polynomials R(n,t) is a divisibility sequence of polynomials, that is, if m divides n then R(m,t) divides R(n,t) in the polynomial ring Z[t].
R(n,1) = A002605; R(n,2) = A057089. (End)

A370176 a(n) = floor(x*a(n-1)) for n > 0 where x = 3+sqrt(15), a(0) = 1.

Original entry on oeis.org

1, 6, 41, 281, 1931, 13271, 91211, 626891, 4308611, 29613011, 203529731, 1398856451, 9614317091, 66079041251, 454160150051, 3121435147811, 21453571787171, 147450041609891, 1013421680382371, 6965230331953571, 47871912074015651, 329022854435815331, 2261368599058985891
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2024

Keywords

Comments

x = A092294 = 3+sqrt(15) = 6.872983346...

Examples

			a(0) = 1;
a(1) = floor(x) = 6 where x = 3+sqrt(15);
a(2) = floor(6*x) = 41;
a(3) = floor(41*x) = 281.
		

Crossrefs

Programs

  • Mathematica
    NestList[Floor[(Sqrt[15]+3)*#] &, 1, 25] (* or *)
    LinearRecurrence[{7, 0, -6}, {1, 6, 41}, 25] (* Paolo Xausa, Mar 31 2024 *)

Formula

a(n) = 7*a(n-1) - 6*a(n-3), a(0) = 1, a(1) = 6, a(2) = 41.
a(n) = 6*a(n-1) + 6*a(n-2) - 1.
a(n) = ((30-7*sqrt(15))*(3-sqrt(15))^n + (30+7*sqrt(15))*(3+sqrt(15))^n + 6)/66.
G.f.: (1-x-x^2)/(1-7*x+6*x^3).
a(n) = Sum_{k = 0..n} A370174(n,k)*5^k.
a(n) = (10*A057089(n) + 5*A057089(n-1) + 1)/11.
Previous Showing 11-14 of 14 results.