A321735
Number of (0,1)-matrices with sum of entries equal to n, no zero rows or columns, weakly decreasing row and column sums, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 2, 7, 30, 153, 939, 6653, 53743, 486576
Offset: 0
The a(3) = 7 matrices:
[1 1]
[1 0]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Cf.
A000700,
A007016,
A049311,
A054976,
A057151,
A104602,
A320451,
A321719,
A321723,
A321732,
A321733,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
A321739
Number of non-isomorphic weight-n set multipartitions (multisets of sets) whose part-sizes are also their vertex-degrees.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 12, 21, 46, 94, 208
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(6) = 12 set multipartitions:
{1} {1}{2} {2}{12} {12}{12} {1}{23}{23} {12}{13}{23}
{1}{2}{3} {1}{1}{23} {2}{13}{23} {3}{23}{123}
{1}{3}{23} {3}{3}{123} {1}{1}{1}{234}
{1}{2}{3}{4} {1}{2}{2}{34} {1}{1}{24}{34}
{1}{2}{4}{34} {1}{2}{34}{34}
{1}{2}{3}{4}{5} {1}{3}{24}{34}
{1}{4}{4}{234}
{2}{4}{12}{34}
{3}{4}{12}{34}
{1}{2}{3}{3}{45}
{1}{2}{3}{5}{45}
{1}{2}{3}{4}{5}{6}
Cf.
A000700,
A049311,
A057151,
A104602,
A319056,
A320451,
A321719,
A321721,
A321723,
A321732,
A321734,
A321735,
A321736,
A321854.
A057152
Limiting number of m X m binary matrices with m+n ones, with no zero rows or columns, up to row and column permutations, as m tends to infinity.
Original entry on oeis.org
1, 2, 15, 83, 545, 3493, 24006, 169419, 1249225, 9542846, 75621458, 620011391, 5253319121
Offset: 0
A321733
Number of (0,1)-matrices with n ones, no zero rows or columns, and the same row sums as column sums.
Original entry on oeis.org
1, 1, 2, 8, 40, 246, 1816, 15630, 153592, 1696760, 20816358, 280807868, 4131117440, 65823490088, 1129256780408
Offset: 0
The a(4) = 40 matrices:
[1 1]
[1 1]
.
[1 1 0][1 1 0][1 0 1][1 0 1][1 0 0]
[1 0 0][0 0 1][1 0 0][0 1 0][0 1 1]
[0 0 1][1 0 0][0 1 0][1 0 0][0 1 0]
.
[1 0 0][0 1 1][0 1 0][0 1 0][0 1 0]
[0 0 1][1 0 0][1 1 0][1 0 1][0 1 1]
[0 1 1][1 0 0][0 0 1][0 1 0][1 0 0]
.
[0 1 0][0 0 1][0 0 1][0 0 1][0 0 1]
[0 0 1][1 1 0][1 0 0][0 1 0][0 0 1]
[1 0 1][0 1 0][0 1 1][1 0 1][1 1 0]
.
[1 0 0 0][1 0 0 0][1 0 0 0][1 0 0 0][1 0 0 0][1 0 0 0]
[0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][0 1 0 0][0 0 0 1][0 1 0 0][0 0 1 0]
[0 0 0 1][0 0 1 0][0 0 0 1][0 1 0 0][0 0 1 0][0 1 0 0]
.
[0 1 0 0][0 1 0 0][0 1 0 0][0 1 0 0][0 1 0 0][0 1 0 0]
[1 0 0 0][1 0 0 0][0 0 1 0][0 0 1 0][0 0 0 1][0 0 0 1]
[0 0 1 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 0 1 0]
[0 0 0 1][0 0 1 0][0 0 0 1][1 0 0 0][0 0 1 0][1 0 0 0]
.
[0 0 1 0][0 0 1 0][0 0 1 0][0 0 1 0][0 0 1 0][0 0 1 0]
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 0 1][0 0 0 1]
[0 1 0 0][0 0 0 1][1 0 0 0][0 0 0 1][1 0 0 0][0 1 0 0]
[0 0 0 1][0 1 0 0][0 0 0 1][1 0 0 0][0 1 0 0][1 0 0 0]
.
[0 0 0 1][0 0 0 1][0 0 0 1][0 0 0 1][0 0 0 1][0 0 0 1]
[1 0 0 0][1 0 0 0][0 1 0 0][0 1 0 0][0 0 1 0][0 0 1 0]
[0 1 0 0][0 0 1 0][1 0 0 0][0 0 1 0][1 0 0 0][0 1 0 0]
[0 0 1 0][0 1 0 0][0 0 1 0][1 0 0 0][0 1 0 0][1 0 0 0]
Cf.
A006052,
A007016,
A049311,
A054976,
A057151,
A104602,
A120732,
A319056,
A321717,
A321723,
A321732,
A321735,
A321736,
A321739.
-
prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#]==Union[Last/@#],Total/@prs2mat[#]==Total/@Transpose[prs2mat[#]]]&]],{n,5}]
Comments