A237052
Numbers n such that (49^n + 1)/50 is prime.
Original entry on oeis.org
7, 19, 37, 83, 1481, 12527, 20149
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime.
Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604,
A231865,
A235683,
A236167,
A236530.
-
Do[ p=Prime[n]; If[ PrimeQ[ (49^p + 1)/50 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((49^n+1)/50) \\ Charles R Greathouse IV, Jun 13 2017
A309533
Numbers k such that (144^k + 1)/145 is prime.
Original entry on oeis.org
23, 41, 317, 3371, 45259, 119671
Offset: 1
Cf.
A000978,
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A126856,
A185240.
-
Do[p=Prime[n]; If[PrimeQ[(144^p + 1)/145], Print[p]], {n, 1, 1000000}]
-
is(n)=ispseudoprime((144^n+1)/145)
A236167
Numbers k such that (47^k + 1)/48 is prime.
Original entry on oeis.org
5, 19, 23, 79, 1783, 7681
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field.
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers k such that (2^k + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604,
A231865,
A235683.
-
Do[ p=Prime[n]; If[ PrimeQ[ (47^p + 1)/48 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((47^n+1)/48) \\ Charles R Greathouse IV, Jun 06 2017
-
from sympy import isprime
def afind(startat=0, limit=10**9):
pow47 = 47**startat
for k in range(startat, limit+1):
q, r = divmod(pow47+1, 48)
if r == 0 and isprime(q): print(k, end=", ")
pow47 *= 47
afind(limit=300) # Michael S. Branicky, May 19 2021
A185230
Numbers n such that (33^n + 1)/34 is prime.
Original entry on oeis.org
5, 67, 157, 12211, 313553
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382. Cf.
A084741,
A084742,
A065507,
A126659,
A126856.
-
Do[ p=Prime[n]; If[ PrimeQ[ (33^p + 1)/34 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((33^n+1)/34) \\ Charles R Greathouse IV, Jun 13 2017
A236530
Numbers n such that (48^n + 1)/49 is prime.
Original entry on oeis.org
5, 17, 131, 84589
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- H. Lifchitz, Mersenne and Fermat primes field
- Eric Weisstein's World of Mathematics, Repunit.
Cf.
A000978 = numbers n such that (2^n + 1)/3 is prime. Cf.
A007658,
A057171,
A057172,
A057173,
A057175,
A001562,
A057177,
A057178,
A057179,
A057180,
A057181,
A057182,
A057183,
A057184,
A057185,
A057186,
A057187,
A057188,
A057189,
A057190,
A057191,
A071380,
A071381,
A071382,
A084741,
A084742,
A065507,
A126659,
A126856,
A185240,
A229145,
A229524,
A230036,
A229663,
A231604,
A231865,
A235683,
A236167.
-
Do[ p=Prime[n]; If[ PrimeQ[ (48^p + 1)/49 ], Print[p] ], {n, 1, 9592} ]
-
is(n)=ispseudoprime((48^n+1)/49) \\ Charles R Greathouse IV, Jun 13 2017
A347138
Numbers k such that (100^k + 1)/101 is prime.
Original entry on oeis.org
3, 293, 461, 11867, 90089
Offset: 1
3 is a term since (100^3 + 1)/101 = 9901 is a prime.
-
Do[ If[ PrimeQ[ (100^n + 1)/101], Print[n]], {n, 0, 18000}]
-
is(n)=isprime((100^n+1)/101)
A348170
Numbers k such that (35^k - 1)/34 is prime.
Original entry on oeis.org
313, 1297, 568453
Offset: 1
313 is a term since (35^313 - 1)/34 is a prime. It has 482 digits in base 10.
-
Do[ If[ PrimeQ[ (35^n-1)/34], Print[n]], {n, 0, 600000}]
-
is(n)=isprime((35^n-1)/34)
A350036
Numbers k such that (81^k + 1)/82 is prime.
Original entry on oeis.org
3, 5, 701, 829, 1031, 1033, 7229, 19463, 370421
Offset: 1
3 is a term since (81^3 + 1)/82 = 6481 is a prime.
-
Do[ If[ PrimeQ[ (81^n+1)/82], Print[n]], {n, 0, 1000000}]
-
is(n)=isprime((81^n+1)/82)
Comments