cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-66 of 66 results.

A182294 Number of connected labeled graphs with n nodes and n+9 edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 20349, 21426300, 8956859646, 2352103292070, 470090359867986, 79002015147719136, 11836068369346126698, 1640443794179544776604, 215598057543037336382670, 27336005392867324870778880, 3385297472808136707459580488, 413211903044379104303226531072
Offset: 1

Views

Author

Michael Burkhart, Apr 23 2012

Keywords

Crossrefs

A diagonal of A343088.
Cf. A057500.

Programs

  • Maple
    N:=20: [seq(coeff(op(i,[seq(coeff(taylor(log(add(x^i*(1+y)^(binomial(i,2))/i!,i=0..N)),x=0,N+1),x,i)*i!,i=1..N)]),y,i-1+10),i=1..N)];

Extensions

Offset corrected and terms a(16) and beyond from Andrew Howroyd, Apr 16 2021

A182295 Number of connected labeled graphs with n nodes and n+10 edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 5985, 13112470, 8535294180, 3096620034795, 800118566011380, 166591475854153740, 30012638793107746776, 4892304538906805158775, 743352352817243899253160, 107478174967432322995403280, 15008321493306766503800761840, 2046331888629918743459557040544
Offset: 1

Views

Author

Michael Burkhart, Apr 23 2012

Keywords

Crossrefs

A diagonal of A343088.
Cf. A057500.

Programs

  • Maple
    N:=20: [seq(coeff(op(i,[seq(coeff(taylor(log(add(x^i*(1+y)^(binomial(i,2))/i!,i=0..N)),x=0,N+1),x,i)*i!,i=1..N)]),y,i-1+11),i=1..N)];

Extensions

Offset corrected and terms a(16) and beyond from Andrew Howroyd, Apr 16 2021

A182371 Number of connected labeled graphs with n nodes and n+11 edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1330, 6905220, 7279892361, 3717889913655, 1255470137209650, 326123611416074340, 70993993399632155710, 13659118629343706026053, 2405832308811599670396135, 397496768417871214784702640, 62693059156926401902640364120, 9561367292987041683030275944320
Offset: 1

Views

Author

Michael Burkhart, Apr 26 2012

Keywords

Crossrefs

A diagonal of A343088.
Cf. A057500.

Programs

  • Maple
    N:=20: [seq(coeff(op(i, [seq(coeff(taylor(log(add(x^i*(1+y)^(binomial(i, 2))/i!, i=0..N)), x=0, N+1), x, i)*i!, i=1..N)]), y, i-1+12), i=1..N)];

Extensions

Offset corrected and terms a(17) and beyond from Andrew Howroyd, Apr 16 2021

A218696 Number of components over all graphs on n labeled nodes with unicyclic components (graphs counted by A137916).

Original entry on oeis.org

1, 15, 222, 3680, 69345, 1477182, 35234220, 932070708, 27109785510, 860394764515, 29600058300780, 1097511032533500, 43637308561557074, 1852311640075120980, 83612841417061582320, 3999611090385007608840, 202111299843794061251580, 10758947714752854861908379
Offset: 3

Views

Author

Geoffrey Critzer, Nov 04 2012

Keywords

Crossrefs

Cf. A057500.

Programs

  • Mathematica
    nn=22;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[D[Exp[y(Log[1/(1-t)]/2-t/2-t^2/4)],y]/.y->1,{x,0,nn}],x],3]

Formula

a(n) = Sum_{m=1..floor(n/3)} A106239(n,m)*m.

A372153 Irregular triangular array read by rows. T(n,k) is the number of simple labeled graphs on [n] with circuit rank equal to k, n >= 1, 0 <= k <= binomial(n-1,2).

Original entry on oeis.org

1, 2, 7, 1, 38, 19, 6, 1, 291, 317, 235, 125, 45, 10, 1, 2932, 5582, 7120, 6915, 5215, 3057, 1371, 455, 105, 15, 1, 36961, 108244, 207130, 306775, 368046, 364539, 300342, 205940, 116910, 54362, 20356, 5985, 1330, 210, 21, 1, 561948, 2331108, 6176387, 12709760
Offset: 1

Views

Author

Geoffrey Critzer, Apr 20 2024

Keywords

Comments

The circuit rank r(G) of a simple graph G is the minimum number of edges that must be removed to break all of its cycles. r(G) = m - n + c where m,n,c are the number of edges, vertices, and connected components respectively of G.
Equivalently, T(n,k) is the number of simple labeled graphs on [n] such that the incidence matrix has nullity equal to k where the incidence matrix is viewed as a matrix with entries in the field GF(2).

Examples

			Triangle T(n,k) begins:
     1;
     2;
     7,    1;
    38,   19,    6,    1;
   291,  317,  235,  125,   45,   10,   1;
  2932, 5582, 7120, 6915, 5215, 3057, 1371, 455, 105, 15, 1;
  ...
		

References

  • R. Diestel, Graph Theory, Springer, 2017, pp. 23-27.

Crossrefs

Programs

  • Mathematica
    Needs["Combinatorica`"]; Map[Select[#, # > 0 &] &, Transpose[ Table[ Table[ Total[ Map[#[[1]] &,Select[Table[{n!/GraphData[{n, i}, "AutomorphismCount"], GraphData[{n, i}, "CyclomaticNumber"]}, {i, 1, NumberOfGraphs[n]}], #[[2]] == k &]]], {n, 1, 7}], {k, 0, 15}]]] // Grid
  • PARI
    T(n)={[Vecrev(p)| p<-Vec(-1+serlaplace(exp(y*log(sum(k=0, n, (1+y)^binomial(k,2)*x^k/k!/y^k, O(x*x^n))))))]}
    { foreach(T(7), row, print(row)) } \\ Andrew Howroyd, Jun 09 2025

Formula

T(n,0) = A001858(n).
E.g.f. for T(n,1): f(x)*g(x) where f(x) is the e.g.f. for A001858 and g(x) is the e.g.f. for A057500.
E.g.f.: exp(y*log(Sum_{k>=0} (1+y)^binomial(k,2)*(x/y)^k/k!)). - Andrew Howroyd, Jun 09 2025

Extensions

More terms from Andrew Howroyd, Jun 09 2025

A331563 Number of labeled cyclic graphs with n edges and 2n vertices.

Original entry on oeis.org

0, 0, 20, 1610, 129654, 11688369, 1194822915, 137766789810, 17758192128830, 2535895233070628, 397875362655895761, 68087081506276861665, 12626853606957534296975, 2523446241515288646389325
Offset: 1

Views

Author

Washington Bomfim, Jan 20 2020

Keywords

Examples

			a(4) = 1610 since we have 3 non-isomorphic cyclic graphs with 4 edges and 8 nodes. (See illustration below.)
To compute a(4) we can consult A057500, which provides the number of labeled connected unicycles. Because A057500(4)=15, and knowing that there are 3 labeled squares, we have 15-3 = 12 Paw Graphs [see Weisstein link]. So graph 1 is labeled in 12 * C(8,4) = 840 ways. Graph 2 is labeled in 3* C(8,4) = 210 ways. A105599 gives 10 as the number of labeled forests with 5 nodes and 4 components, so graph 3 is labeled in 10 * C(8,3) = 560 ways. We have 840 + 210 + 560 = 1610.
.
  graph 1    graph 2    graph 3 (triangle + forest with
                                 5 nodes and 4 components)
   *--*       *--*       *--* *
   | /|       |  |       | /  |
   |/ |       |  |       |/   |
   *  *       *--*       *    *
  * * * *    * * * *      * * *
		

Crossrefs

Formula

a(n) = A331505(2n) - A302112(n).
Previous Showing 61-66 of 66 results.