A205645 Number of nilpotent loops of order 2*prime(n) up to isotopism.
3, 64, 3658004, 1023090941561683953759580, 2684673506279593406254437209960379084, 382103603974564085117495134243710834769544696954218618882023686506660
Offset: 2
Keywords
Examples
a(4) = 3658004 because prime(4) = 7 and there are 3658004 nilpotent loops of order 2*7 = 14.
References
- L. Clavier, About the autotopisms of abelian groups, 2012.
- D. Daly and P. Vojtěchovský, Enumeration of nilpotent loops via cohomology, J. Algebra, 322(11):4080-4098, 2009.
- H.O. Pflugfelder, Quasigroups and Loops: Introduction, 1990.
- J. D. Phillips and P. Vojtěchovský, The varieties of loops of bolmoufang type, Algebra Universalis, 54(3):259-271, 2005.
Links
- Lucien Clavier, Enumeration of nilpotent loops up to isotopy, arXiv:1201.5659v1 [math.GR], Jan 26, 2012.
- Lucien Clavier, Enumeration of nilpotent loops up to isotopy, Commentationes Mathematicae Universitatis Carolinae, 53 (2012), 159-177.
Comments