A282401
Eisenstein series E_28(q) (alternate convention E_14(q)), multiplied by 3392780147.
Original entry on oeis.org
3392780147, 6960, 934155393840, 53074158495516480, 125380214560150002480, 51856040954589843756960, 7123493021854278627673920, 457358042050198589771226240, 16828247534415852672059972400, 404722169541211889603611092720
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24),
A282356 (657931*E_26), this sequence (3392780147*E_28).
-
terms = 10;
E28[x_] = 3392780147 + 6960*Sum[k^27*x^k/(1 - x^k), {k, 1, terms}];
E28[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282548
Expansion of phi_{12, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 4098, 531444, 16785412, 244140630, 2177857512, 13841287208, 68753047560, 282431130813, 1000488301740, 3138428376732, 8920506494928, 23298085122494, 56721594978384, 129747072969720, 281612482805776, 582622237229778, 1157402774071674
Offset: 0
Cf.
A064987 (phi_{2, 1}),
A281372 (phi_{4, 1}),
A282050 (phi_{6, 1}),
A282060 (phi_{8, 1}),
A282254 (phi_{10, 1}), this sequence (phi_{12, 1}).
-
Table[n * DivisorSigma[11, n], {n, 0, 18}] (* Amiram Eldar, Sep 06 2023 *)
-
a(n) = if(n < 1, 0, n*sigma(n, 11)) \\ Andrew Howroyd, Jul 25 2018
A288472
Numerators of coefficients in expansion of E_14/E_12.
Original entry on oeis.org
1, -82104, -181275671592, 1327007921039904, 16726528971891002133912, -212292443057353273999454544, -1528649681810950691089095375538848, 27164473060529924968213209402868250688, 139687438912977894660348148674573721130447640
Offset: 0
E_14/E_12 = 1 - 82104/691 * q - 181275671592/477481 * q^2 + 1327007921039904/329939371 * q^3 + 16726528971891002133912/227988105361 * q^4 + ... .
-
terms = 9;
E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];
E12[x_] = 1 + (65520/691)*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}];
E14[x]/E12[x] + O[x]^terms // CoefficientList[#, x]& // Numerator (* Jean-François Alcover, Feb 26 2018 *)
A282182
Eisenstein series E_30(q) (alternate convention E_15(q)), multiplied by 1723168255201.
Original entry on oeis.org
1723168255201, -171864, -92268782591832, -11795091175438423776, -49536425459206569762648, -32012164592742919922046864, -6332441368275869747902027488, -553385882817076320573218661312, -26594665913504249904864455466840
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24),
A282356 (657931*E_26),
A282401 (3392780147*E_28), this sequence (1723168255201*E_30).
-
terms = 9;
E30[x_] = 1723168255201 - 171864*Sum[k^29*x^k/(1 - x^k), {k, 1, terms}];
E30[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A282543
Coefficients in q-expansion of E_4^2*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
Original entry on oeis.org
1, -1536, 551808, 163854336, -93387735168, -9709554816000, 4142226444876288, 642510156233453568, 41792421673548259200, 1615606968766288470528, 42343208407470359036160, 812663841518551604717568, 12060089370317565140003328
Offset: 0
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E4[x]^2*E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
A295817
Coefficients in expansion of E_14^(-1/4).
Original entry on oeis.org
1, 6, 49248, 11042304, 6770802642, 2705631701472, 1359219630420288, 633774007586896896, 312343963839774306864, 152751427857668869125990, 75972914003765783253275712, 37915118574439727639476081152, 19063775719322131645175269693920
Offset: 0
A280021
Expansion of phi_{11, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
Original entry on oeis.org
0, 1, 2052, 177156, 4202512, 48828150, 363524112, 1977326792, 8606744640, 31382654013, 100195363800, 285311670732, 744500215872, 1792160394206, 4057474577184, 8650199741400, 17626613022976, 34271896307922, 64397206034676, 116490258898580, 205200886312800
Offset: 0
Cf.
A013957 (sigma_9(n)),
A282254 (n*sigma_9(n)), this sequence (n^2*sigma_9(n)).
-
Table[If[n>0, n^2 * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
-
for(n=0, 20, print1(if(n==0, 0, n^2 * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017
A282540
Eisenstein series E_32(q) (alternate convention E_16(q)), multiplied by 7709321041217.
Original entry on oeis.org
7709321041217, 32640, 70093866303360, 20160859654708062720, 150525431711563807489920, 151991844177246093750032640, 43295116458269350559666465280, 5149788469617367127914995164160, 323250903208723929093223124860800
Offset: 0
Cf.
A006352 (E_2),
A004009 (E_4),
A013973 (E_6),
A008410 (E_8),
A013974 (E_10),
A029828 (691*E_12),
A058550 (E_14),
A029829 (3617*E_16),
A279892 (43867*E_18),
A029830 (174611*E_20),
A279893 (77683*E_22),
A029831 (236364091*E_24),
A282356 (657931*E_26),
A282401 (3392780147*E_28),
A282182 (1723168255201*E_30), this sequence (7709321041217*E_32).
-
terms = 9;
E32[x_] = 7709321041217 + 32640*Sum[k^31*x^k/(1 - x^k), {k, 1, terms}];
E32[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
Comments