A066045
Triangle T(n,k) defined by Sum_{1<=k<=n} T(n,k)*u^k*t^n/n! = exp(((1-t)*(1-t^2)*(1-t^3)...)^(-u)-1).
Original entry on oeis.org
1, 3, 2, 8, 18, 5, 42, 118, 90, 15, 144, 900, 1075, 450, 52, 1440, 6788, 12375, 8475, 2340, 203, 5760, 61824, 141470, 140175, 63700, 12789, 877, 75600, 586584, 1700580, 2218335, 1441440, 474614, 73668, 4140, 524160, 6064416, 21677980
Offset: 1
Triangle begins:
[1],
[3, 2],
[8, 18, 5],
[42, 118, 90, 15],
[144, 900, 1075, 450, 52],
...
A318580
Expansion of e.g.f. exp(-1 + Product_{k>=1} 1/(1 - x^k)^k).
Original entry on oeis.org
1, 1, 7, 55, 601, 7561, 116191, 1999327, 39267985, 850964401, 20332107991, 527930427751, 14838001344937, 447653776595065, 14440021169407471, 495398956418435791, 18012260306904120481, 691502230924473978337, 27948692251661337581095, 1185878351946613955122711
Offset: 0
-
seq(n!*coeff(series(exp(-1+mul(1/(1-x^k)^k,k=1..100)),x=0,20),x,n),n=0..19); # Paolo P. Lava, Jan 09 2019
-
nmax = 19; CoefficientList[Series[Exp[-1 + Product[1/(1 - x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 19; CoefficientList[Series[Exp[-1 + Exp[Sum[DivisorSigma[2, k] x^k/k, {k, 1, nmax}]]], {x, 0, nmax}], x] Range[0, nmax]!
p[n_] := p[n] = Sum[DivisorSigma[2, k] p[n - k], {k, n}]/n; p[0] = 1; a[n_] := a[n] = Sum[p[k] k! Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]
A320899
Expansion of e.g.f. exp(1/theta_4(x) - 1), where theta_4() is the Jacobi theta function.
Original entry on oeis.org
1, 2, 12, 104, 1120, 14592, 221824, 3835904, 74262528, 1589016320, 37181031424, 943547716608, 25791165349888, 754934109863936, 23547020011929600, 779291847538638848, 27263652732032843776, 1005002283128197349376, 38921431600215853760512, 1579513585265275661189120
Offset: 0
-
seq(coeff(series(factorial(n)*(exp(-1+mul((1+x^k)/(1-x^k),k=1..n))),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 23 2018
-
nmax = 19; CoefficientList[Series[Exp[1/EllipticTheta[4, 0, x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Sum[PartitionsP[k - j] PartitionsQ[j], {j, 0, k}] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]