cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A204767 Quadruples (a,b,c,d) of the form ( n*(n^3-1), n^3-1, 2*n^3+1, n*(n^3+2) ).

Original entry on oeis.org

0, 0, 3, 3, 14, 7, 17, 20, 78, 26, 55, 87, 252, 63, 129, 264, 620, 124, 251, 635, 1290, 215, 433, 1308, 2394, 342, 687, 2415, 4088, 511, 1025, 4112, 6552, 728, 1459, 6579, 9990, 999, 2001, 10020, 14630, 1330, 2663, 14663, 20724, 1727, 3457, 20760, 28548, 2196, 4395, 28587
Offset: 1

Views

Author

Vincenzo Librandi, Mar 04 2012

Keywords

Comments

Four consecutive (a,b,c,d) in the sequence are solutions to a^3+b^3+c^3 = d^3, that is a(4k+1)^3+a(4k+2)^3+a(4k+3)^3 = a(4k+4)^3.
Also, A058895(n)^3 + A068601(n)^3 + A033562(n)^3 = A185065(n)^3.
The sequence corresponds to the case m=1 in the identity (n*(n^3-m^3))^3+(m*(n^3-m^3))^3+(m*(2*n^3+m^3))^3 = (n*(n^3+2*m^3))^3.
G. H. Hardy and E. M. Wright gave this identity in their "An Introduction to the Theory of Numbers" together with (n*(n^3-2*m^3))^3+(m*(n^3+m^3))^3+(m*(2*n^3-m^3))^3 = (n*(n^3+m^3))^3 (see References). - Bruno Berselli, Mar 13 2012

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 2008 (Sixth edition), Par. 13.7.

Crossrefs

Programs

  • Magma
    &cat[[n*(n^3-1), n^3-1, 2*n^3+1, n*(n^3+2)]: n in [1..40]];
  • Mathematica
    Flatten[Table[{n^4 - n, n^3 - 1, 2 n^3 + 1, n^4 + 2 n}, {n, 1, 40}]] (* Vincenzo Librandi, Jan 02 2014 *)

A365372 Array read by ascending antidiagonals: A(n, k) = n*(k*n^2 - 1) with k > 0.

Original entry on oeis.org

0, 6, 1, 24, 14, 2, 60, 51, 22, 3, 120, 124, 78, 30, 4, 210, 245, 188, 105, 38, 5, 336, 426, 370, 252, 132, 46, 6, 504, 679, 642, 495, 316, 159, 54, 7, 720, 1016, 1022, 858, 620, 380, 186, 62, 8, 990, 1449, 1528, 1365, 1074, 745, 444, 213, 70, 9, 1320, 1990, 2178, 2040, 1708, 1290, 870, 508, 240, 78, 10
Offset: 1

Views

Author

Stefano Spezia, Sep 02 2023

Keywords

Examples

			The array begins:
    0,   1,   2,   3,    4,    5, ...
    6,  14,  22,  30,   38,   46, ...
   24,  51,  78, 105,  132,  159, ...
   60, 124, 188, 252,  316,  380, ...
  120, 245, 370, 495,  620,  745, ...
  210, 426, 642, 858, 1074, 1290, ...
  ...
		

Crossrefs

Cf. A007531, A017137, A035328 (k=4), A058895 (main diagonal), A365373 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=n(k n^2-1); Table[A[n-k+1,k],{n,11},{k,n}]//Flatten

Formula

G.f.: x*y*(x^2*y + y - 2*x*(y - 3))/((1 - x)^4*(1 - y)^2).
1st column: A(n, 1) = A007531(n+1).
2nd row: A(2, n) = A017137(n-1).
Previous Showing 11-12 of 12 results.