cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A193576 a(n) = T(n)^3 + n^3 where T(n) is a triangular number.

Original entry on oeis.org

2, 35, 243, 1064, 3500, 9477, 22295, 47168, 91854, 167375, 288827, 476280, 755768, 1160369, 1731375, 2519552, 3586490, 5006043, 6865859, 9269000, 12335652, 16204925, 21036743, 27013824, 34343750, 43261127, 54029835, 66945368, 82337264, 100571625, 122053727
Offset: 1

Views

Author

Vincenzo Librandi, Sep 08 2011

Keywords

Crossrefs

Programs

  • Magma
    [(n^3*(n^3+3*n^2+3*n+9)/8): n in [1..40]];
    
  • Python
    def A193576(n): return n**3*(n*(n*(n+3)+3)+9)>>3 # Chai Wah Wu, Jun 12 2025

Formula

a(n) = (n^3*(n^3+3*n^2+3*n+9)/8) = (1/8)*(n+3)*(n^2+3)*n^3.
From Chai Wah Wu, Jun 12 2025: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
G.f.: x*(x^5 - 28*x^3 - 40*x^2 - 21*x - 2)/(x - 1)^7. (End)
a(n) = A000578(n) + A059827(n). - Alois P. Heinz, Jun 12 2025
E.g.f.: exp(x)*x*(16 + 124*x + 192*x^2 + 98*x^3 + 18*x^4 + x^5)/8. - Stefano Spezia, Jun 13 2025

A091480 Table of multigraphs (by antidiagonals) with n (>=1) nodes and k (>=0) edges. Each type of object labeled from its own label set.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 9, 6, 1, 0, 1, 27, 36, 10, 1, 0, 1, 81, 216, 100, 15, 1, 0, 1, 243, 1296, 1000, 225, 21, 1, 0, 1, 729, 7776, 10000, 3375, 441, 28, 1, 0, 1, 2187, 46656, 100000, 50625, 9261, 784, 36, 1, 0, 1, 6561, 279936, 1000000, 759375
Offset: 1

Views

Author

Christian G. Bower, Jan 13 2004

Keywords

Examples

			1  0   0    0     0 ...
1  1   1    1     1 ...
1  3   9   27    81 ...
1  6  36  216  1296 ...
1 10 100 1000 10000 ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 114 (2.4.44).

Crossrefs

Columns 0-8: A000012, A000217(n-1), A000537(n-1), A059827(n-1), A059977(n-1), A059860(n-1), A059978(n-1), A059979(n-1), A059980(n-1).
Cf. A091478.

Formula

a(n, k) = binomial(n, 2)^k.
Previous Showing 11-12 of 12 results.