cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A366634 Sum of the divisors of 7^n-1.

Original entry on oeis.org

12, 124, 780, 7812, 33624, 354640, 1704240, 18929096, 97036800, 800520192, 3958188480, 56928231360, 193778020824, 1830926384640, 11181115146240, 115997032277280, 465294239722800, 5175558387507200, 22852200371636160, 287850454432579584, 1318081737957660000
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(5)=33624 because 7^5-1 has divisors {1, 2, 3, 6, 2801, 5602, 8403, 16806}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](7^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1, 7^Range[30]-1]

Formula

a(n) = sigma(7^n-1) = A000203(A024075(n)).

A085030 Number of prime factors of cyclotomic(n,5), which is A019323(n), the value of the n-th cyclotomic polynomial evaluated at x=5.

Original entry on oeis.org

2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 1, 4, 2, 4, 1, 3, 2, 2, 3, 2, 2, 4, 2, 3, 3, 2, 2, 2, 4, 2, 2, 3, 2, 1, 1, 1, 2, 3, 3, 3, 4, 5, 1, 1, 2, 2, 2, 3, 3, 3, 4, 3, 2, 5, 4, 4, 2, 2, 3, 3, 3, 5, 2, 3, 2, 3, 2, 2, 4, 3, 2, 3, 4, 3, 1, 6, 1, 2, 1, 4, 3, 4, 2, 3, 3, 4, 3
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057956, number of prime factors of 5^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), this sequence (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 5]]][[2]], {n, 1, 100}]

A366612 Number of divisors of 5^n-1.

Original entry on oeis.org

3, 8, 6, 20, 12, 48, 6, 48, 24, 64, 6, 240, 6, 64, 96, 224, 12, 512, 24, 640, 48, 128, 12, 1152, 192, 64, 384, 320, 24, 6144, 12, 1024, 48, 128, 384, 10240, 24, 512, 48, 6144, 12, 18432, 12, 1280, 3072, 128, 6, 10752, 12, 4096, 192, 960, 24, 81920, 576, 1536
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=6 because 5^3-1 has divisors {1, 2, 4, 31, 62, 124}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](5^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 5^Range[100]-1]
  • PARI
    a(n) = numdiv(5^n-1);

Formula

a(n) = sigma0(5^n-1) = A000005(A024049(n)).

A366611 Number of distinct prime divisors of 5^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 2, 4, 4, 5, 2, 6, 2, 5, 6, 6, 3, 7, 4, 8, 5, 6, 3, 8, 7, 5, 8, 7, 4, 11, 3, 8, 5, 6, 8, 11, 4, 8, 5, 11, 3, 12, 3, 9, 11, 6, 2, 11, 3, 11, 7, 8, 4, 14, 8, 9, 6, 7, 3, 17, 4, 7, 10, 11, 7, 12, 6, 11, 8, 14, 3, 16, 4, 8, 15, 11, 6, 11, 4, 15
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(5^n - 1), ", "))

Formula

a(n) = omega(5^n-1) = A001221(A024049(n)).

A212485 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(5) listed in ascending order.

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 12, 24, 31, 62, 124, 13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624, 11, 22, 44, 71, 142, 284, 781, 1562, 3124, 7, 9, 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 93, 126, 168, 186, 217, 248, 252, 279, 372, 434, 504, 558, 651, 744, 868, 1116
Offset: 1

Views

Author

Boris Putievskiy, Jun 02 2012

Keywords

Comments

The elements m of row n, are also solutions to the equation: multiplicative order of 5 mod m = n, with gcd(m,5) = 1, cf. A050977.

Examples

			Triangle T(n,k) begins:
   1,  2,   4;
   3,  6,   8, 12,  24;
  31, 62, 124;
  13, 16,  26, 39,  48,  52,  78,  104,  156, 208, 312, 624;
  11, 22,  44, 71, 142, 284, 781, 1562, 3124;
  ...
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 557-560.

Crossrefs

Column k=3 of A212737.
Column k=1 gives: A218357.

Programs

  • Maple
    with(numtheory):
    M:= proc(n) option remember;
          `if`(n=1, {1, 2, 4}, divisors(5^n-1) minus U(n-1))
        end:
    U:= proc(n) option remember;
          `if`(n=0, {}, M(n) union U(n-1))
        end:
    T:= n-> sort([M(n)[]])[]:
    seq(T(n), n=1..8);
  • Mathematica
    M[n_] := M[n] = If[n == 1, {1, 2, 4}, Divisors[5^n-1] ~Complement~ U[n-1]];
    U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]];
    T[n_] := Sort[M[n]]; Array[T, 8] // Flatten (* Jean-François Alcover, Jun 10 2018, from Maple *)

Formula

T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (5^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2,4}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(5^d-1) = A059887.
Previous Showing 11-15 of 15 results.