Original entry on oeis.org
0, 1, 3, 2, 7, 4, 6, 5, 15, 8, 12, 11, 14, 9, 13, 10, 31, 16, 24, 23, 28, 19, 27, 20, 30, 17, 25, 22, 29, 18, 26, 21, 63, 32, 48, 47, 56, 39, 55, 40, 60, 35, 51, 44, 59, 36, 52, 43, 62, 33, 49, 46, 57, 38, 54, 41, 61, 34, 50, 45, 58, 37, 53, 42, 127, 64, 96
Offset: 0
A341915(5) = 7, so a(7) = 5.
A367307
Reverse bits in blocks in binary expansion of n where blocks are separated by every second 1 bit starting from the most significant 1 bit as the first separator.
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 5, 7, 8, 12, 10, 13, 9, 11, 14, 15, 16, 24, 20, 25, 18, 21, 26, 27, 17, 19, 22, 23, 28, 30, 29, 31, 32, 48, 40, 49, 36, 41, 50, 51, 34, 37, 42, 43, 52, 54, 53, 55, 33, 35, 38, 39, 44, 46, 45, 47, 56, 60, 58, 61, 57, 59, 62, 63, 64, 96, 80, 97
Offset: 0
For n = 100930, reversals are each (...) block
n = 100930 = binary 1(1000)1(0100)1(000010)
a(n) = 72016 = binary 1(0001)1(0010)1(010000)
-
a(n) = my(v1); v1 = binary(n); my(A = 1); while(A <= #v1, my(B = A, C = 0, D); A++; while(A <= #v1, C += v1[A]; if(v1[A] && (C == 1), D = A); if(C < 2, A++, break)); if(C > 0, v1[D] = 0; v1[A + B - D] = 1)); fromdigits(v1, 2)
Original entry on oeis.org
1, 3, 2, 5, 7, 6, 4, 9, 11, 13, 15, 10, 14, 12, 8, 17, 19, 21, 23, 25, 27, 29, 31, 18, 22, 26, 30, 20, 28, 24, 16, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 34, 38, 42, 46, 50, 54, 58, 62, 36, 44, 52, 60, 40, 56, 48, 32, 65, 67, 69, 71
Offset: 1
A316385(42) = 50 hence a(50) = 42.
-
b1(n) = my(b=binary(n)); fromdigits(concat(b[1], Vecrev(vector(#b-1, k, b[k+1]))), 2); \\ A059893
b2(n) = if(n < 2, n, if((n + 1) == 2^logint(n + 1, 2), (n + 1) / 2, n + 1)) \\ A153152
a(n) = my(A = 2^logint(n, 2), B = b1(b2(b1(n))) - A); (2 * B + 1) * A / 2 ^ (if(B == 0, -1, logint(B, 2)) + 1) \\ Mikhail Kurkov, Sep 09 2023 [verification needed]
A345252
2-1-Fibonacci cohort array, a rectangular array T(n,k) read by downward antidiagonals.
Original entry on oeis.org
1, 2, 3, 4, 6, 5, 7, 11, 10, 8, 12, 19, 18, 16, 9, 20, 32, 31, 29, 17, 13, 33, 53, 52, 50, 30, 26, 14, 54, 87, 86, 84, 51, 47, 27, 15, 88, 142, 141, 139, 85, 81, 48, 28, 21, 143, 231, 230, 228, 140, 136, 82, 49, 42, 22, 232, 375, 374, 372, 229, 225, 137, 83, 76
Offset: 1
Northwest corner of {T(n,k)}:
k=1 k=2 k=3 k=4 k=5 k=6 ...
n=0: 1, 2, 4, 7, 12, 20, ...
n=1: 3, 6, 11, 19, 32, 53, ...
n=2: 5, 10, 18, 31, 52, 86, ...
n=3: 8, 16, 29, 50, 84, 139, ...
n=4: 9, 17, 30, 51, 85, 140, ...
...
Northwest corner of {T(n,k)} in maximal Fibonacci expansion (see link):
k=1 k=2 k=3 ...
n=0: F(1), F(1)+F(2), F(1)+F(2)+F(3), ...
n=1: F(1)+F(3), F(1)+F(3)+F(4), F(1)+F(3)+F(4)+F(5), ...
n=2: F(1)+F(2)+F(4), F(1)+F(2)+F(4)+F(5), F(1)+F(2)+F(4)+F(5)+F(6), ...
...
Northwest corner of {T(n,k)} as "Fibonacci gaps," or differences between successive indices in maximal Fibonacci expansion above, (see link):
k=1 k=2 k=3 k=4 k=5 k=6 ...
n=0: *, 1, 11, 111, 1111, 11111, ...
n=1: 2, 21, 211, 2111, 21111, 211111, ...
n=2: 12, 121, 1211, 12111, 121111, 1211111, ...
n=3: 22, 221, 2211, 22111, 221111, 2211111, ...
n=4: 122, 1221, 12211, 122111, 1221111, 12211111, ...
...
Cf.
A000027,
A000045,
A000071,
A000201,
A001950,
A035513,
A059893,
A083047,
A130233,
A132817,
A191436,
A194030,
A232560,
A345253,
A345254.
-
(* Define A000045 *)
F[n_] := Fibonacci[n]
(* Defined A130233 *)
Finv[n_] := Floor[Log[GoldenRatio, Sqrt[5]n + 1]]
(* Simplified Formula *)
MatrixForm[Table[n + F[Finv[n] + k + 2] - F[Finv[n] + 2], {n, 0, 4}, {k, 1, 6}]]
(* Branching Formula *)
MatrixForm[Table[NestList[Function[# + F[Finv[#]]], n + F[Finv[n] + 1], 5], {n, 0, 4}]]
A345254
Dispersion of A004754, a rectangular array T(n,k) read by downward antidiagonals.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 7, 16, 17, 18, 11, 12, 32, 33, 34, 19, 20, 13, 64, 65, 66, 35, 36, 21, 14, 128, 129, 130, 67, 68, 37, 22, 15, 256, 257, 258, 131, 132, 69, 38, 23, 24, 512, 513, 514, 259, 260, 133, 70, 39, 40, 25, 1024, 1025, 1026, 515, 516, 261, 134
Offset: 1
Northwest corner of {T(n,k)}:
k=1 k=2 k=3 k=4 k=5 k=6
n=0: 1, 2, 4, 8, 16, 32, ...
n=1: 3, 5, 9, 17, 33, 65, ...
n=2: 6, 10, 18, 34, 66, 130, ...
n=3: 7, 11, 19, 35, 67, 131, ...
n=4: 12, 20, 36, 68, 132, 260, ...
...
Northwest corner of {T(n,k)} in base-2:
k=1 k=2 k=3 k=4 k=5 k=6
n=0: 1, 10, 100, 1000, 10000, 100000, ...
n=1: 11, 101, 1001, 10001, 100001, 1000001, ...
n=2: 110, 1010, 10010, 100010, 1000010, 10000010, ...
n=3: 111, 1011, 10011, 100010, 1000011, 10000011, ...
n=4: 1100,10100, 100100, 1000100, 10000100, 100000100, ...
...
Cf.
A000027,
A004754,
A053645,
A005408,
A005843,
A019586,
A054582,
A059893,
A065120,
A139706,
A139708,
A191448,
A345252,
A345253.
-
(*Simplified Formula*)
MatrixForm[Prepend[Table[n + 2^(Floor[Log[2, n]] + k), {n, 1, 4}, {k, 1, 6}], Table[2^(k - 1), {k, 1, 6}]]]
(*Branching Formula*)
MatrixForm[Prepend[Table[NestList[Function[# + 2^(Floor[Log[2, #]])], n + 2^(Floor[Log[2, n]] + 1), 5], {n, 1, 4}], NestList[Function[# + 2^(Floor[Log[2, #]])], 1, 5]]]
-
T(n, k) = if (n==0, 2^(k-1), n + 2^(log(n)\log(2) + k));
matrix(7, 7, n, k, n--; T(n, k)) \\ Michel Marcus, Jul 30 2021
A378872
Discriminant of the minimal polynomial of a number whose continued fraction expansion has periodic part given by the n-th composition (in standard order).
Original entry on oeis.org
5, 8, 5, 13, 12, 12, 5, 20, 21, 8, 40, 21, 40, 40, 5, 29, 32, 60, 17, 60, 85, 85, 96, 32, 17, 85, 96, 17, 96, 96, 5, 40, 45, 24, 104, 13, 148, 148, 165, 24, 148, 8, 221, 148, 12, 221, 260, 45, 104, 148, 165, 148, 221, 12, 260, 104, 165, 221, 260, 165, 260, 260
Offset: 1
For n = 6, the 5th composition is (1,2). The value of the continued fraction 1+1/(2+1/(1+1/(2+...))) is (1+sqrt(3))/2, whose minimal polynomial is 2*x^2-2*x-1 with discriminant a(6) = 12.
A087275
Write n in binary: 1ab..yz, then a(n) = 1b..yz + ... + 1yz + 1z + 1.
Original entry on oeis.org
0, 1, 1, 3, 4, 3, 4, 7, 9, 9, 11, 7, 9, 9, 11, 15, 18, 19, 22, 19, 22, 23, 26, 15, 18, 19, 22, 19, 22, 23, 26, 31, 35, 37, 41, 39, 43, 45, 49, 39, 43, 45, 49, 47, 51, 53, 57, 31, 35, 37, 41, 39, 43, 45, 49, 39, 43, 45, 49, 47, 51, 53, 57, 63, 68, 71, 76
Offset: 1
-
a(n)=local(v, s, l); v=binary(n); l=length(v); s=0; for(k=2, l, s=s+2^(l-k)+sum(m=k+1, l, v[m]*2^(l-m))); s
A087276
Write n in binary: 1ab..yz, then a(n) = 1ab..yz + ... + 1yz + 1z + 1.
Original entry on oeis.org
1, 3, 4, 7, 9, 9, 11, 15, 18, 19, 22, 19, 22, 23, 26, 31, 35, 37, 41, 39, 43, 45, 49, 39, 43, 45, 49, 47, 51, 53, 57, 63, 68, 71, 76, 75, 80, 83, 88, 79, 84, 87, 92, 91, 96, 99, 104, 79, 84, 87, 92, 91, 96, 99, 104, 95, 100, 103, 108, 107, 112, 115
Offset: 1
-
a(n)=local(v, s, l); v=binary(n); l=length(v); s=0; for(k=2, l, s=s+2^(l-k)+sum(m=k+1, l, v[m]*2^(l-m))); s+n
A272614
Numbers whose binary digits, except for the first "1", are given by floor(((k-n)/n) mod 2) with 1<=k<=n.
Original entry on oeis.org
1, 2, 6, 8, 28, 40, 104, 144, 496, 672, 1632, 2240, 7872, 11648, 27520, 33536, 120576, 175616, 445952, 629760, 2014208, 2701312, 6453248, 8712192, 33353728, 48881664, 114548736, 144949248, 476561408, 684687360, 1787789312, 2501836800, 8510177280, 11647451136, 27590000640
Offset: 0
-
nmax = 34;
a[n_] := 2^n + Sum[ Floor@Mod[(n - k)/k, 2]* 2^(n - k), {k, 1, n}];
Table[a[n] , {n, 0, nmax}]
-
a(n) = 2^n + sum(k=1, n, (floor(((n-k)/k)) % 2) * 2^(n-k)); \\ Michel Marcus, May 20 2016
A336434
Square array read by descending antidiagonals T(n,k): In the binary expansion of n, reverse the order of the bits in the same position as the active bits in A057716(k).
Original entry on oeis.org
2, 4, 1, 1, 2, 3, 4, 4, 6, 4, 8, 2, 5, 1, 6, 1, 2, 6, 2, 5, 5, 8, 8, 10, 1, 3, 3, 7, 1, 2, 9, 4, 5, 6, 7, 8, 8, 2, 10, 4, 12, 3, 7, 8, 10, 1, 2, 3, 4, 5, 6, 7, 8, 12, 9, 8, 8, 10, 8, 12, 12, 14, 8, 9, 10, 11, 16, 4, 9, 4, 9, 6, 13, 1, 12, 12, 14, 12
Offset: 1
The binary expansion of 18 is 10010_2 and the active bits in the binary expansion of A057716(22) = 27 = 11011_2 are 0, 1, 3, and 4. So, to get T(18,22), we swap the 0th and 4th bits and then the 1st and 3rd bits, which gives us T(18,22) = 9.
Square array T(n,k) begins:
\k 1 2 3 4 5 6 7 8 9 10 ...
n\
1| 2 4 1 4 8 1 8 1 8 1 ...
2| 1 2 4 2 2 8 2 2 2 8 ...
3| 3 6 5 6 10 9 10 3 10 9 ...
4| 4 1 2 1 4 4 4 8 4 4 ...
5| 6 5 3 5 12 5 12 9 12 5 ...
6| 5 3 6 3 6 12 6 10 6 12 ...
7| 7 7 7 7 14 13 14 11 14 13 ...
8| 8 8 8 8 1 2 1 4 1 2 ...
9| 10 12 9 12 9 3 9 5 9 3 ...
10| 9 10 12 10 3 10 3 6 3 10 ...
-
A336434(n,k)={my(K=k+#binary(k+#binary(k)), P=select(Z->bittest(K,Z),[0..#binary(K)-1]), Q1=P[1..floor(#P/2)],Q2=Vecrev(P)[1..floor(#P/2)], Sum=vecsum(apply(p->if(bittest(n,Q1[p])!=bittest(n,Q2[p]), bitor(shift(1,Q1[p]),shift(1,Q2[p]))), [1..floor(#P/2)])));bitxor(n,Sum)}
Comments