cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A261099 Main diagonal of A261096.

Original entry on oeis.org

0, 0, 0, 4, 3, 0, 0, 0, 12, 16, 23, 19, 8, 23, 0, 20, 0, 7, 16, 11, 15, 0, 7, 0, 0, 0, 0, 4, 3, 0, 48, 48, 60, 64, 71, 67, 86, 93, 74, 94, 74, 85, 116, 111, 119, 99, 108, 99, 30, 30, 86, 89, 112, 111, 0, 0, 78, 82, 107, 103, 0, 20, 26, 46, 96, 103, 15, 0, 41, 29, 78, 73, 60, 115, 38, 119, 38, 63, 56, 107, 0, 104, 0, 55, 26, 100, 0, 104, 19, 42, 33, 56, 11, 52, 0, 25
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Equally: main diagonal of A261097.
For permutation p, which has rank n in permutation list A055089 (A195663), a(n) gives the rank of the "square" of that permutation (obtained by composing it with itself as: q(i) = p(p(i))) in the same list. Thus zeros (which mark the identity permutation, with rank 0) occur at positions where the permutations of A055089/A195663 are involutions, listed by A014489.

Crossrefs

Main diagonal of A261096 and A261097.
Cf. A014489 (the positions of zeros).
Cf. also A261219.
Related permutations: A060119, A060126.

Formula

a(n) = A261096(n,n) = A261097(n,n).
By conjugating a similar sequence:
a(n) = A060119(A261219(A060126(n))).

A261219 Main diagonal of A261216: a(n) = A261216(n,n).

Original entry on oeis.org

0, 0, 0, 5, 0, 3, 0, 0, 14, 16, 22, 20, 0, 19, 8, 20, 0, 7, 0, 13, 0, 7, 10, 16, 0, 0, 0, 5, 0, 3, 54, 54, 60, 65, 66, 69, 84, 90, 78, 95, 84, 81, 114, 108, 114, 107, 102, 111, 0, 0, 74, 76, 100, 98, 30, 30, 78, 83, 102, 105, 0, 19, 26, 45, 100, 119, 0, 13, 74, 87, 28, 41, 0, 97, 50, 98, 0, 49, 0, 97, 26, 117, 22, 47, 36, 108, 60, 113, 36, 63, 0, 25, 50, 33, 10, 59, 0, 73, 0, 49, 52
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Equally: main diagonal of A261217.
For permutation p, which has rank n in permutation list A060117, a(n) gives the rank of the "square" of that permutation (obtained by composing it with itself as: q(i) = p(p(i))) in the same list. Equally, if permutation p has rank n in the order used in list A060118, a(n) gives the rank of the p*p in that same list. Thus zeros (which mark the identity permutation, with rank 0 in both orders) occur at positions where the permutations of A060117 (equally: of A060118) are involutions, listed by A261220.

Crossrefs

Main diagonal of A261216 and A261217.
Cf. A261220 (the positions of zeros).
Cf. also A261099, A089841.
Related permutations: A060119, A060126.

Formula

a(n) = A261216(n,n) = A261217(n,n).
By conjugating a similar sequence:
a(n) = A060126(A261099(A060119(n))).

A055090 Number of cycles (excluding fixed points) of the n-th finite permutation in reversed colexicographic ordering (A055089).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2000

Keywords

Comments

Among the first n! entries k appears A136394(n,k) times. - Tilman Piesk, Apr 06 2012

Crossrefs

Cf. A195663, A195664, A055089 (ordered finite permutations).
Cf. A198380 (cycle type of the n-th finite permutation).

Programs

  • Maple
    with(group); seq(nops(convert(PermRevLexUnrank(j),'disjcyc')),j=0..)];
    # Procedure PermRevLexUnrank given in A055089.

Formula

a(n) = A055093(n) - A055091(n).
a(n) = A056170(A290095(n)) = A060128(A060126(n)). - Antti Karttunen, Dec 30 2017

Extensions

Name changed by Tilman Piesk, Apr 06 2012

A261097 Transpose of square array A261096.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 3, 4, 3, 4, 2, 0, 5, 4, 5, 5, 5, 1, 2, 5, 6, 4, 1, 4, 5, 3, 6, 7, 7, 3, 0, 0, 4, 7, 7, 8, 6, 8, 2, 3, 1, 12, 6, 8, 9, 9, 10, 9, 1, 2, 13, 13, 10, 9, 10, 8, 6, 11, 10, 0, 18, 12, 14, 11, 10, 11, 11, 11, 7, 8, 11, 19, 19, 16, 15, 8, 11, 12, 10, 7, 10, 11, 9, 0, 18, 20, 17, 16, 9, 12, 13, 13, 9, 6, 6, 10, 1, 1, 22, 21, 14, 17, 18, 13, 14, 12, 14, 8, 9, 7, 14, 0, 2, 23, 22, 15, 6, 19, 14
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Each row and column is a permutation of A001477. See the comments at A261096.

Examples

			The top left corner of the array:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  0,  3,  2,  5,  4,  7,  6,  9,  8, 11, 10, 13, ...
   2,  4,  0,  5,  1,  3,  8, 10,  6, 11,  7,  9, 14, ...
   3,  5,  1,  4,  0,  2,  9, 11,  7, 10,  6,  8, 15, ...
   4,  2,  5,  0,  3,  1, 10,  8, 11,  6,  9,  7, 16, ...
   5,  3,  4,  1,  2,  0, 11,  9, 10,  7,  8,  6, 17, ...
   6,  7, 12, 13, 18, 19,  0,  1, 14, 15, 20, 21,  2, ...
   7,  6, 13, 12, 19, 18,  1,  0, 15, 14, 21, 20,  3, ...
   8, 10, 14, 16, 20, 22,  2,  4, 12, 17, 18, 23,  0, ...
   9, 11, 15, 17, 21, 23,  3,  5, 13, 16, 19, 22,  1, ...
  10,  8, 16, 14, 22, 20,  4,  2, 17, 12, 23, 18,  5, ...
  11,  9, 17, 15, 23, 21,  5,  3, 16, 13, 22, 19,  4, ...
  12, 18,  6, 19,  7, 13, 14, 20,  0, 21,  1, 15,  8, ...
  ...
		

Crossrefs

Transpose: A261096.
Row 0 & Column 0: A001477 (identity permutation).
Row 1: A004442.
Column 1: A261098.
Main diagonal: A261099.
Cf. also A055089, A195663.
Cf. also A261216, A261217 (similar arrays, but using different orderings of permutations).
Permutations used in conjugation-formulas: A056019, A060119, A060120, A060126, A060127.

Formula

By conjugating with related permutations and arrays:
A(i,j) = A056019(A261096(A056019(i),A056019(j))).
A(i,j) = A060119(A261217(A060126(i),A060126(j))).
A(i,j) = A060120(A261216(A060127(i),A060127(j))).

A261217 A(i,j) = rank (in A060118) of the composition of the i-th and the j-th permutation in table A060118, which lists all finite permutations.

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 3, 5, 3, 4, 2, 0, 4, 4, 5, 5, 4, 1, 3, 5, 6, 4, 3, 5, 5, 2, 6, 7, 7, 1, 2, 1, 4, 7, 7, 8, 6, 8, 0, 0, 0, 14, 6, 8, 9, 9, 11, 9, 2, 1, 15, 15, 11, 9, 10, 8, 6, 10, 10, 3, 22, 14, 12, 10, 10, 11, 11, 10, 7, 9, 11, 23, 23, 16, 13, 9, 11, 12, 10, 9, 11, 11, 8, 0, 22, 21, 17, 17, 8, 12, 13, 13, 7, 8, 7, 10, 1, 1, 19, 20, 13, 16, 19, 13, 14, 12, 14, 6, 6, 6, 12, 0, 2, 18, 18, 12, 8, 18, 14
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

The square array A(row>=0, col>=0) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
A(i,j) gives the rank (in ordering used by table A060118) of the permutation which is obtained by composing permutations p and q listed as the i-th and the j-th permutation in irregular table A060118 (note that the identity permutation is the 0th). Here the convention is that "permutations act of the left", thus, if p1 and p2 are permutations, then the product of p1 and p2 (p1 * p2) is defined such that (p1 * p2)(i) = p1(p2(i)) for i=1...
Equally, A(i,j) gives the rank in A060117 of the composition of the i-th and the j-th permutation in A060117, when convention is that "permutations act on the right".
Each row and column is a permutation of A001477, because this is the Cayley table ("multiplication table") of an infinite enumerable group, namely, that subgroup of the infinite symmetric group (S_inf) which consists of permutations moving only finite number of elements.

Examples

			The top left corner of the array:
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  0,  3,  2,  5,  4,  7,  6,  9,  8, 11, 10, 13, ...
   2,  5,  0,  4,  3,  1,  8, 11,  6, 10,  9,  7, 14, ...
   3,  4,  1,  5,  2,  0,  9, 10,  7, 11,  8,  6, 15, ...
   4,  3,  5,  1,  0,  2, 10,  9, 11,  7,  6,  8, 16, ...
   5,  2,  4,  0,  1,  3, 11,  8, 10,  6,  7,  9, 17, ...
   6,  7, 14, 15, 22, 23,  0,  1, 12, 13, 18, 19,  8, ...
   7,  6, 15, 14, 23, 22,  1,  0, 13, 12, 19, 18,  9, ...
   8, 11, 12, 16, 21, 19,  2,  5, 14, 17, 20, 23,  6, ...
   9, 10, 13, 17, 20, 18,  3,  4, 15, 16, 21, 22,  7, ...
  10,  9, 17, 13, 18, 20,  4,  3, 16, 15, 22, 21, 11, ...
  11,  8, 16, 12, 19, 21,  5,  2, 17, 14, 23, 20, 10, ...
  12, 19,  8, 21, 16, 11, 14, 23,  2, 20, 17,  5,  0, ...
  ...
For A(1,2) (row=1, column=2, both starting from zero), we take as permutation p the permutation which has rank=1 in the ordering used by A060118, which is a simple transposition (1 2), which we can extend with fixed terms as far as we wish (e.g., like {2,1,3,4,5,...}), and as permutation q we take the permutation which has rank=2 (in the same list), which is {1,3,2}. We compose these from the left, so that the latter one, q, acts first, thus c(i) = p(q(i)), and the result is permutation {2,3,1}, which is listed as the 3rd one in A060118, thus A(1,2) = 3.
For A(2,1) we compose those two permutations in opposite order, as d(i) = q(p(i)), which gives permutation {3,1,2} which is listed as the 5th one in A060118, thus A(2,1) = 5.
		

Crossrefs

Transpose: A261216.
Row 0 & Column 0: A001477 (identity permutation)
Row 1: A004442.
Column 1: A261218.
Main diagonal: A261219.
Cf. also A089839.
Permutations used in conjugation-formulas: A060119, A060120, A060125, A060126, A060127.

Formula

By conjugating with related permutations and arrays:
A(i,j) = A060125(A261216(A060125(i),A060125(j))).
A(i,j) = A060127(A261096(A060120(i),A060120(j))).
A(i,j) = A060126(A261097(A060119(i),A060119(j))).

A261098 Row 1 of A261096.

Original entry on oeis.org

1, 0, 4, 5, 2, 3, 7, 6, 10, 11, 8, 9, 18, 19, 20, 21, 22, 23, 12, 13, 14, 15, 16, 17, 25, 24, 28, 29, 26, 27, 31, 30, 34, 35, 32, 33, 42, 43, 44, 45, 46, 47, 36, 37, 38, 39, 40, 41, 49, 48, 52, 53, 50, 51, 55, 54, 58, 59, 56, 57, 66, 67, 68, 69, 70, 71, 60, 61, 62, 63, 64, 65, 96, 97, 98, 99, 100, 101
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Equally, column 1 of A261097.
Take the n-th (n>=0) permutation from the list A055089 (A195663), change 1 to 2 and 2 to 1 to get another permutation, and note its rank in the same list to obtain a(n).
Self-inverse permutation of nonnegative integers.

Examples

			In A195663 the permutation with rank 12 is [1,3,4,2], and swapping the elements 1 and 2 we get permutation [2,3,4,1], which is listed in A195663 as the permutation with rank 18, thus a(12) = 18.
		

Crossrefs

Row 1 of A261096, column 1 of A261097.
Cf. also A004442.
Related permutations: A060119, A060126, A261218.

Formula

a(n) = A261096(1,n).
By conjugating related permutations:
a(n) = A060119(A261218(A060126(n))).

A261218 Row 1 of A261216.

Original entry on oeis.org

1, 0, 5, 4, 3, 2, 7, 6, 11, 10, 9, 8, 19, 18, 23, 22, 21, 20, 13, 12, 17, 16, 15, 14, 25, 24, 29, 28, 27, 26, 31, 30, 35, 34, 33, 32, 43, 42, 47, 46, 45, 44, 37, 36, 41, 40, 39, 38, 49, 48, 53, 52, 51, 50, 55, 54, 59, 58, 57, 56, 67, 66, 71, 70, 69, 68, 61, 60, 65, 64, 63, 62, 97, 96, 101, 100, 99, 98, 103, 102, 107, 106, 105, 104, 115, 114, 119, 118, 117, 116, 109, 108, 113, 112, 111, 110, 73
Offset: 0

Views

Author

Antti Karttunen, Aug 26 2015

Keywords

Comments

Equally, column 1 of A261217.
Take the n-th (n>=0) permutation from the list A060117, change 1 to 2 and 2 to 1 to get another permutation, and note its rank in the same list to obtain a(n).
Equally, we can take the n-th (n>=0) permutation from the list A060118, swap the elements in its two leftmost positions, and note the rank of that permutation in A060118 to obtain a(n).
Self-inverse permutation of nonnegative integers.

Examples

			In A060117 the permutation with rank 2 is [1,3,2], and swapping the elements 1 and 2 we get permutation [2,3,1], which is listed in A060117 as the permutation with rank 5, thus a(2) = 5.
Equally, in A060118 the permutation with rank 2 is [1,3,2], and swapping the elements in the first and the second position gives permutation [3,1,2], which is listed in A060118 as the permutation with rank 5, thus a(2) = 5.
		

Crossrefs

Row 1 of A261216, column 1 of A261217.
Cf. also A004442.
Related permutations: A060119, A060126, A261098.

Formula

a(n) = A261216(1,n).
By conjugating related permutations:
a(n) = A060126(A261098(A060119(n))).

A290096 Filter-sequence related to cycle-structure of permutations listed in table A055089: Least number with the same prime signature as A290095.

Original entry on oeis.org

2, 4, 12, 8, 8, 12, 60, 36, 24, 16, 16, 24, 24, 16, 60, 24, 36, 16, 16, 24, 24, 60, 16, 36, 420, 180, 180, 72, 72, 180, 120, 72, 48, 32, 32, 48, 48, 32, 120, 48, 72, 32, 32, 48, 48, 120, 32, 72, 120, 72, 48, 32, 32, 48, 420, 180, 120, 48, 48, 120, 180, 72, 48, 32, 32, 72, 72, 180, 32, 48, 72, 32, 48, 32, 120, 48, 72, 32
Offset: 0

Views

Author

Antti Karttunen, Aug 17 2017

Keywords

Crossrefs

Cf. A046523, A060126, A290095, A290097 (rgs-transform of this sequence).
Other filter-sequences related to factorial base and finite permutations: A278225, A278234, A278235, A278236.

Formula

a(n) = A046523(A290095(n)).
a(n) = A278225(A060126(n)).
Previous Showing 11-18 of 18 results.