cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 118 results. Next

A154420 Maximal coefficient of MacMahon polynomial (cf. A060187) p(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; that is, a(n) = Max(coefficients(p(x,n))).

Original entry on oeis.org

1, 1, 6, 23, 230, 1682, 23548, 259723, 4675014, 69413294, 1527092468, 28588019814, 743288515164, 16818059163492, 504541774904760, 13397724585164019, 455522635895576646, 13892023109165902550, 527896878148304296900
Offset: 0

Views

Author

Roger L. Bagula, Jan 09 2009

Keywords

Comments

Since the center is the maximum in the Pascal, Eulerian and MacMahon triangles, a(n)=MacMahon[n,Floor[n/2]]

Crossrefs

Programs

  • Maple
    gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x));
    series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
    collect(simplify(%), x) end:
    seq(coeff(gf(n,1),x,iquo(n,2)),n=0..18); # Middle Eulerian numbers, A006551.
    seq(coeff(gf(n,2),x,iquo(n,2)),n=0..18); # Middle midpoint Eulerian numbers.
    # Peter Luschny, May 02 2013
  • Mathematica
    p[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
    Table[Max[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 30}]

Formula

a(n) ~ sqrt(3) * 2^(n+1) * n^n / exp(n). - Vaclav Kotesovec, Oct 28 2021

Extensions

Edited by N. J. A. Sloane, Jan 15 2009

A138076 Triangle read by rows: T(n, k) = (-1)^(n+k) * A060187(n+1, k+1).

Original entry on oeis.org

1, -1, 1, 1, -6, 1, -1, 23, -23, 1, 1, -76, 230, -76, 1, -1, 237, -1682, 1682, -237, 1, 1, -722, 10543, -23548, 10543, -722, 1, -1, 2179, -60657, 259723, -259723, 60657, -2179, 1, 1, -6552, 331612, -2485288, 4675014, -2485288, 331612, -6552, 1, -1, 19673, -1756340, 21707972, -69413294, 69413294, -21707972, 1756340, -19673, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 26 2009

Keywords

Comments

Former name: A signed version of A060187 obtained by taking the Z-transform of p(t,x) = exp(t*(1+2*x)). - G. C. Greubel, Jul 21 2024

Examples

			Triangle begins as:
   1;
  -1,     1;
   1,    -6,      1;
  -1,    23,    -23,        1;
   1,   -76,    230,      -76,       1;
  -1,   237,  -1682,     1682,    -237,        1;
   1,  -722,  10543,   -23548,   10543,     -722,      1;
  -1,  2179, -60657,   259723, -259723,    60657,  -2179,     1;
   1, -6552, 331612, -2485288, 4675014, -2485288, 331612, -6552, 1;
		

Crossrefs

Programs

  • Magma
    A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
    A138076:= func< n,k | (-1)^(n+k)*A060187(n+1,k+1) >;
    [A138076(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2024
    
  • Mathematica
    p[t_] = Exp[t]*x/(Exp[2*t] + x);
    Table[CoefficientList[(n!*(1+x)^(n+1)/x)*SeriesCoefficient[Series[p[ t], {t,0,30}], n], x], {n,0,12}]//Flatten
  • SageMath
    @CachedFunction
    def t(n,k): # t = A060187
        if k==1 or k==n: return 1
        return (2*(n-k)+1)*t(n-1, k-1) + (2*k-1)*t(n-1, k)
    def A138076(n,k): return (-1)^(n+k)*t(n+1,k+1)
    flatten([[A138076(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2024

Formula

T(n, k) = (-1)^(n+k) * A060187(n+1, k+1).
From G. C. Greubel, Jul 21 2024: (Start)
T(2*n, n) = (-1)^n * A177043(n).
Sum_{k=0..n} T(n, k) = (1/2)*(1 + (-1)^n)*(-1)^floor((n+ 1)/2) * A002436(floor(n/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n * A000165(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n * A178118(n+1). (End)

A176291 A symmetrical triangle based on Narayana numbers and Eulerian numbers of type B: T(n, k) = 2 + A060187(n, k) - 2*binomial(n, k)*binomial(n+1, k)/(k+1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 13, 13, 1, 1, 58, 192, 58, 1, 1, 209, 1584, 1584, 209, 1, 1, 682, 10335, 23200, 10335, 682, 1, 1, 2125, 60267, 258745, 258745, 60267, 2125, 1, 1, 6482, 330942, 2482938, 4671488, 2482938, 330942, 6482, 1, 1, 19585, 1755262, 21702934, 69402712, 69402712, 21702934, 1755262, 19585, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2010

Keywords

Comments

Row sums are: {1, 2, 4, 28, 310, 3588, 45236, 642276, 10312214, 185760988, 3715773650, ...}.

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    2,      1;
  1,   13,     13,       1;
  1,   58,    192,      58,       1;
  1,  209,   1584,    1584,     209,       1;
  1,  682,  10335,   23200,   10335,     682,      1;
  1, 2125,  60267,  258745,  258745,   60267,   2125,    1;
  1, 6482, 330942, 2482938, 4671488, 2482938, 330942, 6482, 1;
		

Crossrefs

Programs

  • GAP
    B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> 2*(1 - B(n,k)*B(n+1,k)/(k+1)) + Sum([0..k], j-> (-1)^j*B(n+1,j)*(2*(k-j)+1)^n) ))); # G. C. Greubel, Nov 23 2019
  • Magma
    B:=Binomial; [2*(1 - B(n,k)*B(n+1,k)/(k+1)) + (&+[(-1)^j*B(n+1,j) *(2*(k-j)+1)^n: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 23 2019
    
  • Maple
    b:= binomial; T:= 2 + sum((-1)^j*b(n+1,j)*(2*(k-j)+1)^n, j=0..k) - 2*b(n, k)*b(n+1, k)/(k+1); seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10); # G. C. Greubel, Nov 23 2019
  • Mathematica
    (* First program *)
    p[x_, n_]= (1 - x)^(n+1)*Sum[(2*k+1)^n*x^k, {k, 0, Infinity}];(*A060187*)
    f[n_, m_]:= CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m+1]];
    T[n_, m_]:= 2 -(-f[n, m] +2*Binomial[n, m]*Binomial[n+1, m]/(m+1));
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
    (* Second program *)
    B:=Binomial; T[n_,k_]:= T[n,k]= 2 +Sum[(-1)^j*B[n+1,j]*(2*(k-j)+1)^n, {j, 0,k}] -2*B[n,k]*B[n+1,k]/(k+1); Table[T[n,k], {n,0,10}, {k,0,n} ]//Flatten (* G. C. Greubel, Nov 23 2019 *)
  • PARI
    T(n,k) = b=binomial; 2 + sum(j=0,k, (-1)^j*b(n+1,j)*(2*(k-j)+1)^n) - 2*b(n, k)*b(n+1, k)/(k+1); \\ G. C. Greubel, Nov 23 2019
    
  • Sage
    b=binomial; [[2 + sum( (-1)^j*b(n+1,j)*(2*(k-j)+1)^n for j in (0..k)) - 2*b(n, k)*b(n+1, k)/(k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 23 2019
    

Formula

T(n, k) = 2 + A060187(n, k) - 2*binomial(n, k)*binomial(n+1, k)/(k+1), where A060187(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)* (2*j+1)^n.

Extensions

Edited by G. C. Greubel, Nov 23 2019

A177429 Triangle read by rows: T(n,m)=A060187(1+n,1+m) *n! / (n-m)!

Original entry on oeis.org

1, 1, 1, 1, 12, 2, 1, 69, 138, 6, 1, 304, 2760, 1824, 24, 1, 1185, 33640, 100920, 28440, 120, 1, 4332, 316290, 2825760, 3795480, 519840, 720, 1, 15253, 2547594, 54541830, 218167320, 152855640, 10982160, 5040, 1, 52416, 18570272, 835056768
Offset: 0

Views

Author

Roger L. Bagula, May 08 2010

Keywords

Comments

Row sums are: 1, 2, 15, 214, 4913, 164306, 7462423, 439114838, 32358353217, 2909210035042, 312597121198751,...

Examples

			1;
1, 1;
1, 12, 2;
1, 69, 138, 6;
1, 304, 2760, 1824, 24;
1, 1185, 33640, 100920, 28440, 120;
1, 4332, 316290, 2825760, 3795480, 519840, 720;
1, 15253, 2547594, 54541830, 218167320, 152855640, 10982160, 5040;
1, 52416, 18570272, 835056768, 7854023520, 16701135360, 6685297920, 264176640, 40320;
1, 177057, 126456480, 10940817888, 209905801056, 1049529005280, 1312898146560, 318670329600, 7138938240, 362880;
		

Crossrefs

Programs

  • Maple
    A177429 := proc(n,k)
        A060187(n+1,k+1)*n!/(n-k)! ;
    end proc: # R. J. Mathar, Jun 16 2015
  • Mathematica
    (*A060187*);
    p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
    f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
    t[n_, m_] := f[n, m]*n!/(n - m)!;
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

A178118 Antidiagonal sums of the triangle A060187.

Original entry on oeis.org

0, 1, 1, 2, 7, 25, 100, 469, 2481, 14406, 90995, 621553, 4561112, 35736921, 297435521, 2618575194, 24297706927, 236870849417, 2419213831452, 25820011544781, 287327296473585, 3326999636488190, 40011485288491131
Offset: 0

Views

Author

Roger L. Bagula, May 20 2010

Keywords

Comments

This sequence is an analog to the Lucas formula which obtains A000045 as the antidiagonal sums of the Pascal triangle A007318.

References

  • David M. Burton, Elementary number theory, McGraw Hill (2002), page 286

Crossrefs

Programs

  • Mathematica
    p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
    f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]]
    a[n_] := Sum[f[n - m - 1, m], {m, 0, Floor[(n - 1)/2]}]
    Table[a[n], {n, 0, 30}]

Formula

a(n) = sum_{m=0.. floor[(n-1)/2]} A060187(n-m-1,m).

Extensions

Exact definition moved to formula - the Assoc. Eds. of the OEIS, Aug 20 2010

A178122 Triangle T(n,m) = A060187(n+1,m+1) + 2*binomial(n,m) - 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 82, 240, 82, 1, 1, 245, 1700, 1700, 245, 1, 1, 732, 10571, 23586, 10571, 732, 1, 1, 2191, 60697, 259791, 259791, 60697, 2191, 1, 1, 6566, 331666, 2485398, 4675152, 2485398, 331666, 6566, 1, 1, 19689, 1756410, 21708138, 69413544, 69413544, 21708138, 1756410, 19689, 1
Offset: 0

Views

Author

Roger L. Bagula, May 20 2010

Keywords

Examples

			Rows n>=0 and columns 0<=m<=n start as:
  1;
  1,     1;
  1,     8,       1;
  1,    27,      27,        1;
  1,    82,     240,       82,        1;
  1,   245,    1700,     1700,      245,        1;
  1,   732,   10571,    23586,    10571,      732,        1;
  1,  2191,   60697,   259791,   259791,    60697,     2191,       1;
  1,  6566,  331666,  2485398,  4675152,  2485398,   331666,    6566,     1;
  1, 19689, 1756410, 21708138, 69413544, 69413544, 21708138, 1756410, 19689, 1;
		

Crossrefs

Programs

  • Magma
    A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
    A178122:= func< n,k | A060187(n+1, k+1) + 2*Binomial(n, k) - 2 >;
    [A178122(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2022
    
  • Mathematica
    p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
    f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
    t[n_, m_] := f[n, m] + 2*Binomial[n, m] - 2 ;
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]
  • Sage
    def A060187(n,k): return sum( (-1)^(k-j)*binomial(n, k-j)*(2*j-1)^(n-1) for j in (1..k) )
    def A178122(n,k): return A060187(n+1, k+1) + 2*binomial(n, k) - 2
    flatten([[A178122(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022

Formula

T(n, m) = A060187(n+1,m+1) + 2*A007318(n,m) - 2.
T(n, m) = T(n, n-m).
Sum_{k=0..n} T(n, k) = A000165(n) + 2*(2^n -(n+1)).

Extensions

Indices in definition corrected, row sum formula added by the Assoc. Eds. of the OEIS - Aug 20 2010

A142240 A triangular sequence from the pattern in row sums of Pascal's triangle A007318, Eulerian numbers A008292 and A060187: Delta_diagonal=m; m={0,1,2,3,...k}.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 5, 6, 5, 2, 2, 6, 8, 8, 6, 2, 2, 7, 10, 11, 10, 7, 2, 2, 8, 12, 14, 14, 12, 8, 2, 2, 9, 14, 17, 18, 17, 14, 9, 2, 2, 10, 16, 20, 22, 22, 20, 16, 10, 2
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 17 2008

Keywords

Comments

Row sums are:
{1, 4, 7, 12, 20, 32, 49, 72, 102, 140}.
The triangle is calculated by hand.
Row sums are:
1) Pascal A007318:ratio =2: delta row zero:a(n)=2*a(n-1);a(1)=1;
b(n)->0
1,2,4,8,16,32,64,128,256,512
2) Eulerian numbers A008292: ratio =n: delta=1:a(n)=n*a(n-1)
1,2,6,24,120,720,...n!
b(n)->1,2,3,4,...
3) A060187:ratio=2*n: delta=2:a(n)=2*n*a(n-1)
b(n)->2,4,6,8,...
{1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200}.
4) hypothetical next level sums:delta=3:b(n)=b(n-1)+3;a(n)=a(n-1)*b(n);
b(n)->{2, 5, 8, 11, 14, 17, 20, 23, 26, 29} diagonal
{1, 2, 10, 80, 880, 12320, 209440, 4188800, 96342400, 2504902400, 72642169600}
5)hypothetical next level sums:delta=3:b(n)=b(n-1)+4;a(n)=a(n-1)*b(n);
b(n)->{2, 6, 10, 14, 18, 22, 26, 30, 34, 38} diagonal
{1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800}
The conjecture that goes with this triangular sequence is that there on n levels like these for Pascal combinatorial quantum levels.

Examples

			{1},
{2, 2},
{2, 3, 2},
{2, 4, 4, 2},
{2, 5, 6, 5, 2},
{2, 6, 8, 8, 6, 2},
{2, 7, 10, 11, 10, 7, 2},
{2, 8, 12, 14, 14, 12, 8, 2},
{2, 9, 14, 17, 18, 17, 14, 9, 2},
{2, 10, 16, 20, 22, 22, 20, 16, 10, 2}
		

Crossrefs

Programs

  • Mathematica
    a={{1},{2,2},{2,3,2},{2,4,4,2}, {2,5,6,5,2},{2,6,8,8,6,2},{2,7,10,11,10,7,2},{2,8,12,14,14, 12,8,2},{2,9,14,17,18,17,14,9,2},{2,10,16,20,22,22,20,16,10,2}} Flatten[a] Table[Apply[Plus,a[[n]]],{n,1,10}]

Formula

b(n,m)=b(n-1,m]+m; Delta_diagonal=m; m={0,1,2,3,...k}.

A142707 Coefficients of derivatives of MacMahon polynomials (A060187): p(x,n)=2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2]; p'(x,n)=(d/dx)p{x,n).

Original entry on oeis.org

1, 6, 2, 23, 46, 3, 76, 460, 228, 4, 237, 3364, 5046, 948, 5, 722, 21086, 70644, 42172, 3610, 6, 2179, 121314, 779169, 1038892, 303285, 13074, 7, 6552, 663224, 7455864, 18700056, 12426440, 1989672, 45864, 8, 19673, 3512680, 65123916, 277653176
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2008

Keywords

Comments

Row sums are:A014479
0, 1, 8, 72, 768, 9600, 138240, 2257920, 41287680, 836075520, 18579456000.

Examples

			{1},
{6, 2},
{23, 46, 3},
{76, 460, 228, 4},
{237, 3364, 5046, 948, 5},
{722, 21086, 70644, 42172, 3610, 6},
{2179, 121314, 779169, 1038892, 303285, 13074, 7},
{6552, 663224, 7455864, 18700056, 12426440, 1989672, 45864, 8},
{19673, 3512680, 65123916, 277653176, 347066470, 130247832, 12294380, 157384, 9},
{59038, 18232282, 534902712, 3627693128, 7635462340, 5441539692, 1248106328, 72929128, 531342, 10}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, x, n, a]; p[x_, n_] = 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2]; Table[FullSimplify[Expand[D[p[x, n], x]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[Expand[D[p[x, n], x]]], x], {n, 0, 10}]; Flatten[%]

Formula

p(x,n)=2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2]; p'(x,n)=(d/dx)p{x,n); t(n,m)=Coefficients(p'(x,n)).

A146543 The LerchPhi functional part of A060187 MacMahon numbers is treated/ solved for as a curvature to give a set of polynomial triangle sequence coefficients: p(x,n)=Sum[A060187(n,m)*x^(m-1),{m,0,n}]; q(x,n)=k from Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k].

Original entry on oeis.org

2, 0, 8, 2, 20, 26, 0, 80, 224, 80, 2, 232, 1692, 1672, 242, 0, 728, 10528, 23568, 10528, 728, 2, 2172, 60678, 259688, 259758, 60636, 2186, 0, 6560, 331584, 2485344, 4674944, 2485344, 331584, 6560, 2, 19664, 1756376, 21707888, 69413420, 69413168
Offset: 0

Views

Author

Roger L. Bagula, Oct 31 2008

Keywords

Comments

The concept here is that the increase in curvature causes transformation of Pascal's triangle into the Eulerian numbers and the MacMahon numbers, while leaving the numerical Modulo 2 Sierpinski Self -Similarity intact. The resulting polynomials have a finite Blaschke elliptical structure. The row sums are: {0, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200}.

Examples

			{}, {2}, {0, 8}, {2, 20, 26}, {0, 80, 224, 80}, {2, 232, 1692, 1672, 242}, {0, 728, 10528, 23568, 10528, 728}, {2, 2172, 60678, 259688, 259758, 60636, 2186}, {0, 6560, 331584, 2485344, 4674944, 2485344, 331584, 6560}, {2, 19664, 1756376, 21707888, 69413420, 69413168, 21708056, 1756304, 19682}, {0, 59048, 9116096, 178301024, 906923072, 1527092720, 906923072, 178301024,9116096, 59048}
		

References

  • Kenneth Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1962, page 66, page 132.
  • Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer,New York,1993,pp 103 ( Herman's Rings as Finite Blaschke sets)

Crossrefs

Programs

  • Mathematica
    Clear[q, p, x, n, a]; p[x_, n_] = p[x_, n_] = (1 - x)^(n + 1)*PolyLog[ -n, x]/x; q[x_, n_] := ((x - 1)^n/x^2)*k /. Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k]; Table[FullSimplify[Expand[q[x, n]]], {n, 0, 10}]; Table[Flatten[CoefficientList[FullSimplify[Expand[q[x, n]]], x]], {n, 0, 10}]; Flatten[%]

Formula

p(x,n)=Sum[A060187(n,m)*x^(m-1),{m,0,n}]; q(x,n)=k from Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k]; t(n,m)=Coefficients(((x - 1)^n/x^2)*q(n,x)).

A146568 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with a power of x divided out: q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((x+1)^n-q(x,n))/x.

Original entry on oeis.org

4, 20, 20, 72, 224, 72, 232, 1672, 1672, 232, 716, 10528, 23528, 10528, 716, 2172, 60636, 259688, 259688, 60636, 2172, 6544, 331584, 2485232, 4674944, 2485232, 331584, 6544, 19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304
Offset: 2

Views

Author

Roger L. Bagula, Nov 01 2008

Keywords

Comments

First elements in each row are: 3^n - 2*n - 1 (A061981).

Examples

			Triangle starts:
{4},
{20, 20},
{72, 224, 72},
{232, 1672, 1672, 232},
{716, 10528, 23528, 10528, 716},
{2172, 60636, 259688, 259688, 60636, 2172},
{6544, 331584, 2485232, 4674944, 2485232, 331584, 6544},
{19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304, 19664},
{59028, 9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096, 59028}
		

Crossrefs

Programs

  • Mathematica
    q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = (q[x, n] - (x + 1)^n)/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 2, 10}]; Flatten[%]

Formula

q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((x+1)^n-q(x,n))/x; t(n,m)=Coefficients(p(x,n)) with n starting at 2.
Previous Showing 11-20 of 118 results. Next