A154420
Maximal coefficient of MacMahon polynomial (cf. A060187) p(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; that is, a(n) = Max(coefficients(p(x,n))).
Original entry on oeis.org
1, 1, 6, 23, 230, 1682, 23548, 259723, 4675014, 69413294, 1527092468, 28588019814, 743288515164, 16818059163492, 504541774904760, 13397724585164019, 455522635895576646, 13892023109165902550, 527896878148304296900
Offset: 0
-
gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x));
series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
collect(simplify(%), x) end:
seq(coeff(gf(n,1),x,iquo(n,2)),n=0..18); # Middle Eulerian numbers, A006551.
seq(coeff(gf(n,2),x,iquo(n,2)),n=0..18); # Middle midpoint Eulerian numbers.
# Peter Luschny, May 02 2013
-
p[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
Table[Max[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 30}]
A138076
Triangle read by rows: T(n, k) = (-1)^(n+k) * A060187(n+1, k+1).
Original entry on oeis.org
1, -1, 1, 1, -6, 1, -1, 23, -23, 1, 1, -76, 230, -76, 1, -1, 237, -1682, 1682, -237, 1, 1, -722, 10543, -23548, 10543, -722, 1, -1, 2179, -60657, 259723, -259723, 60657, -2179, 1, 1, -6552, 331612, -2485288, 4675014, -2485288, 331612, -6552, 1, -1, 19673, -1756340, 21707972, -69413294, 69413294, -21707972, 1756340, -19673, 1
Offset: 0
Triangle begins as:
1;
-1, 1;
1, -6, 1;
-1, 23, -23, 1;
1, -76, 230, -76, 1;
-1, 237, -1682, 1682, -237, 1;
1, -722, 10543, -23548, 10543, -722, 1;
-1, 2179, -60657, 259723, -259723, 60657, -2179, 1;
1, -6552, 331612, -2485288, 4675014, -2485288, 331612, -6552, 1;
-
A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
A138076:= func< n,k | (-1)^(n+k)*A060187(n+1,k+1) >;
[A138076(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2024
-
p[t_] = Exp[t]*x/(Exp[2*t] + x);
Table[CoefficientList[(n!*(1+x)^(n+1)/x)*SeriesCoefficient[Series[p[ t], {t,0,30}], n], x], {n,0,12}]//Flatten
-
@CachedFunction
def t(n,k): # t = A060187
if k==1 or k==n: return 1
return (2*(n-k)+1)*t(n-1, k-1) + (2*k-1)*t(n-1, k)
def A138076(n,k): return (-1)^(n+k)*t(n+1,k+1)
flatten([[A138076(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2024
A176291
A symmetrical triangle based on Narayana numbers and Eulerian numbers of type B: T(n, k) = 2 + A060187(n, k) - 2*binomial(n, k)*binomial(n+1, k)/(k+1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 13, 13, 1, 1, 58, 192, 58, 1, 1, 209, 1584, 1584, 209, 1, 1, 682, 10335, 23200, 10335, 682, 1, 1, 2125, 60267, 258745, 258745, 60267, 2125, 1, 1, 6482, 330942, 2482938, 4671488, 2482938, 330942, 6482, 1, 1, 19585, 1755262, 21702934, 69402712, 69402712, 21702934, 1755262, 19585, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 13, 13, 1;
1, 58, 192, 58, 1;
1, 209, 1584, 1584, 209, 1;
1, 682, 10335, 23200, 10335, 682, 1;
1, 2125, 60267, 258745, 258745, 60267, 2125, 1;
1, 6482, 330942, 2482938, 4671488, 2482938, 330942, 6482, 1;
-
B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> 2*(1 - B(n,k)*B(n+1,k)/(k+1)) + Sum([0..k], j-> (-1)^j*B(n+1,j)*(2*(k-j)+1)^n) ))); # G. C. Greubel, Nov 23 2019
-
B:=Binomial; [2*(1 - B(n,k)*B(n+1,k)/(k+1)) + (&+[(-1)^j*B(n+1,j) *(2*(k-j)+1)^n: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 23 2019
-
b:= binomial; T:= 2 + sum((-1)^j*b(n+1,j)*(2*(k-j)+1)^n, j=0..k) - 2*b(n, k)*b(n+1, k)/(k+1); seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10); # G. C. Greubel, Nov 23 2019
-
(* First program *)
p[x_, n_]= (1 - x)^(n+1)*Sum[(2*k+1)^n*x^k, {k, 0, Infinity}];(*A060187*)
f[n_, m_]:= CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m+1]];
T[n_, m_]:= 2 -(-f[n, m] +2*Binomial[n, m]*Binomial[n+1, m]/(m+1));
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
(* Second program *)
B:=Binomial; T[n_,k_]:= T[n,k]= 2 +Sum[(-1)^j*B[n+1,j]*(2*(k-j)+1)^n, {j, 0,k}] -2*B[n,k]*B[n+1,k]/(k+1); Table[T[n,k], {n,0,10}, {k,0,n} ]//Flatten (* G. C. Greubel, Nov 23 2019 *)
-
T(n,k) = b=binomial; 2 + sum(j=0,k, (-1)^j*b(n+1,j)*(2*(k-j)+1)^n) - 2*b(n, k)*b(n+1, k)/(k+1); \\ G. C. Greubel, Nov 23 2019
-
b=binomial; [[2 + sum( (-1)^j*b(n+1,j)*(2*(k-j)+1)^n for j in (0..k)) - 2*b(n, k)*b(n+1, k)/(k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 23 2019
A177429
Triangle read by rows: T(n,m)=A060187(1+n,1+m) *n! / (n-m)!
Original entry on oeis.org
1, 1, 1, 1, 12, 2, 1, 69, 138, 6, 1, 304, 2760, 1824, 24, 1, 1185, 33640, 100920, 28440, 120, 1, 4332, 316290, 2825760, 3795480, 519840, 720, 1, 15253, 2547594, 54541830, 218167320, 152855640, 10982160, 5040, 1, 52416, 18570272, 835056768
Offset: 0
1;
1, 1;
1, 12, 2;
1, 69, 138, 6;
1, 304, 2760, 1824, 24;
1, 1185, 33640, 100920, 28440, 120;
1, 4332, 316290, 2825760, 3795480, 519840, 720;
1, 15253, 2547594, 54541830, 218167320, 152855640, 10982160, 5040;
1, 52416, 18570272, 835056768, 7854023520, 16701135360, 6685297920, 264176640, 40320;
1, 177057, 126456480, 10940817888, 209905801056, 1049529005280, 1312898146560, 318670329600, 7138938240, 362880;
-
A177429 := proc(n,k)
A060187(n+1,k+1)*n!/(n-k)! ;
end proc: # R. J. Mathar, Jun 16 2015
-
(*A060187*);
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
t[n_, m_] := f[n, m]*n!/(n - m)!;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
A178118
Antidiagonal sums of the triangle A060187.
Original entry on oeis.org
0, 1, 1, 2, 7, 25, 100, 469, 2481, 14406, 90995, 621553, 4561112, 35736921, 297435521, 2618575194, 24297706927, 236870849417, 2419213831452, 25820011544781, 287327296473585, 3326999636488190, 40011485288491131
Offset: 0
- David M. Burton, Elementary number theory, McGraw Hill (2002), page 286
-
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]]
a[n_] := Sum[f[n - m - 1, m], {m, 0, Floor[(n - 1)/2]}]
Table[a[n], {n, 0, 30}]
Exact definition moved to formula - the Assoc. Eds. of the OEIS, Aug 20 2010
A178122
Triangle T(n,m) = A060187(n+1,m+1) + 2*binomial(n,m) - 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 82, 240, 82, 1, 1, 245, 1700, 1700, 245, 1, 1, 732, 10571, 23586, 10571, 732, 1, 1, 2191, 60697, 259791, 259791, 60697, 2191, 1, 1, 6566, 331666, 2485398, 4675152, 2485398, 331666, 6566, 1, 1, 19689, 1756410, 21708138, 69413544, 69413544, 21708138, 1756410, 19689, 1
Offset: 0
Rows n>=0 and columns 0<=m<=n start as:
1;
1, 1;
1, 8, 1;
1, 27, 27, 1;
1, 82, 240, 82, 1;
1, 245, 1700, 1700, 245, 1;
1, 732, 10571, 23586, 10571, 732, 1;
1, 2191, 60697, 259791, 259791, 60697, 2191, 1;
1, 6566, 331666, 2485398, 4675152, 2485398, 331666, 6566, 1;
1, 19689, 1756410, 21708138, 69413544, 69413544, 21708138, 1756410, 19689, 1;
-
A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
A178122:= func< n,k | A060187(n+1, k+1) + 2*Binomial(n, k) - 2 >;
[A178122(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2022
-
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
t[n_, m_] := f[n, m] + 2*Binomial[n, m] - 2 ;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
-
def A060187(n,k): return sum( (-1)^(k-j)*binomial(n, k-j)*(2*j-1)^(n-1) for j in (1..k) )
def A178122(n,k): return A060187(n+1, k+1) + 2*binomial(n, k) - 2
flatten([[A178122(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
Indices in definition corrected, row sum formula added by the Assoc. Eds. of the OEIS - Aug 20 2010
A142240
A triangular sequence from the pattern in row sums of Pascal's triangle A007318, Eulerian numbers A008292 and A060187: Delta_diagonal=m; m={0,1,2,3,...k}.
Original entry on oeis.org
1, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 5, 6, 5, 2, 2, 6, 8, 8, 6, 2, 2, 7, 10, 11, 10, 7, 2, 2, 8, 12, 14, 14, 12, 8, 2, 2, 9, 14, 17, 18, 17, 14, 9, 2, 2, 10, 16, 20, 22, 22, 20, 16, 10, 2
Offset: 1
{1},
{2, 2},
{2, 3, 2},
{2, 4, 4, 2},
{2, 5, 6, 5, 2},
{2, 6, 8, 8, 6, 2},
{2, 7, 10, 11, 10, 7, 2},
{2, 8, 12, 14, 14, 12, 8, 2},
{2, 9, 14, 17, 18, 17, 14, 9, 2},
{2, 10, 16, 20, 22, 22, 20, 16, 10, 2}
-
a={{1},{2,2},{2,3,2},{2,4,4,2}, {2,5,6,5,2},{2,6,8,8,6,2},{2,7,10,11,10,7,2},{2,8,12,14,14, 12,8,2},{2,9,14,17,18,17,14,9,2},{2,10,16,20,22,22,20,16,10,2}} Flatten[a] Table[Apply[Plus,a[[n]]],{n,1,10}]
A142707
Coefficients of derivatives of MacMahon polynomials (A060187): p(x,n)=2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2]; p'(x,n)=(d/dx)p{x,n).
Original entry on oeis.org
1, 6, 2, 23, 46, 3, 76, 460, 228, 4, 237, 3364, 5046, 948, 5, 722, 21086, 70644, 42172, 3610, 6, 2179, 121314, 779169, 1038892, 303285, 13074, 7, 6552, 663224, 7455864, 18700056, 12426440, 1989672, 45864, 8, 19673, 3512680, 65123916, 277653176
Offset: 1
{1},
{6, 2},
{23, 46, 3},
{76, 460, 228, 4},
{237, 3364, 5046, 948, 5},
{722, 21086, 70644, 42172, 3610, 6},
{2179, 121314, 779169, 1038892, 303285, 13074, 7},
{6552, 663224, 7455864, 18700056, 12426440, 1989672, 45864, 8},
{19673, 3512680, 65123916, 277653176, 347066470, 130247832, 12294380, 157384, 9},
{59038, 18232282, 534902712, 3627693128, 7635462340, 5441539692, 1248106328, 72929128, 531342, 10}
-
Clear[p, x, n, a]; p[x_, n_] = 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2]; Table[FullSimplify[Expand[D[p[x, n], x]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[Expand[D[p[x, n], x]]], x], {n, 0, 10}]; Flatten[%]
A146543
The LerchPhi functional part of A060187 MacMahon numbers is treated/ solved for as a curvature to give a set of polynomial triangle sequence coefficients: p(x,n)=Sum[A060187(n,m)*x^(m-1),{m,0,n}]; q(x,n)=k from Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k].
Original entry on oeis.org
2, 0, 8, 2, 20, 26, 0, 80, 224, 80, 2, 232, 1692, 1672, 242, 0, 728, 10528, 23568, 10528, 728, 2, 2172, 60678, 259688, 259758, 60636, 2186, 0, 6560, 331584, 2485344, 4674944, 2485344, 331584, 6560, 2, 19664, 1756376, 21707888, 69413420, 69413168
Offset: 0
{}, {2}, {0, 8}, {2, 20, 26}, {0, 80, 224, 80}, {2, 232, 1692, 1672, 242}, {0, 728, 10528, 23568, 10528, 728}, {2, 2172, 60678, 259688, 259758, 60636, 2186}, {0, 6560, 331584, 2485344, 4674944, 2485344, 331584, 6560}, {2, 19664, 1756376, 21707888, 69413420, 69413168, 21708056, 1756304, 19682}, {0, 59048, 9116096, 178301024, 906923072, 1527092720, 906923072, 178301024,9116096, 59048}
- Kenneth Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1962, page 66, page 132.
- Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer,New York,1993,pp 103 ( Herman's Rings as Finite Blaschke sets)
-
Clear[q, p, x, n, a]; p[x_, n_] = p[x_, n_] = (1 - x)^(n + 1)*PolyLog[ -n, x]/x; q[x_, n_] := ((x - 1)^n/x^2)*k /. Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k]; Table[FullSimplify[Expand[q[x, n]]], {n, 0, 10}]; Table[Flatten[CoefficientList[FullSimplify[Expand[q[x, n]]], x]], {n, 0, 10}]; Flatten[%]
A146568
Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with a power of x divided out: q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((x+1)^n-q(x,n))/x.
Original entry on oeis.org
4, 20, 20, 72, 224, 72, 232, 1672, 1672, 232, 716, 10528, 23528, 10528, 716, 2172, 60636, 259688, 259688, 60636, 2172, 6544, 331584, 2485232, 4674944, 2485232, 331584, 6544, 19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304
Offset: 2
Triangle starts:
{4},
{20, 20},
{72, 224, 72},
{232, 1672, 1672, 232},
{716, 10528, 23528, 10528, 716},
{2172, 60636, 259688, 259688, 60636, 2172},
{6544, 331584, 2485232, 4674944, 2485232, 331584, 6544},
{19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304, 19664},
{59028, 9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096, 59028}
-
q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = (q[x, n] - (x + 1)^n)/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 2, 10}]; Flatten[%]
Comments