cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A161021 Collatz (or 3x+1) trajectory starting at 703.

Original entry on oeis.org

703, 2110, 1055, 3166, 1583, 4750, 2375, 7126, 3563, 10690, 5345, 16036, 8018, 4009, 12028, 6014, 3007, 9022, 4511, 13534, 6767, 20302, 10151, 30454, 15227, 45682, 22841, 68524, 34262, 17131, 51394, 25697, 77092, 38546, 19273, 57820, 28910
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 03 2009

Keywords

Comments

703 = A060412(5); a(A006577(703)) = a(170) = 1;
a(n) = A008884(n-59) for n with 162 <= n <= 170;
a(n) = A161022(n+53) for n with 155 <= n <= 170;
a(n) = A161023(n+153) for n with 144 <= n <= 170.

Programs

  • Mathematica
    NestList[If[EvenQ[#],#/2,3#+1]&,703,40] (* Harvey P. Dale, Nov 27 2011 *)

Extensions

Edited by N. J. A. Sloane, Jul 27 2019

A161022 Collatz (or 3x+1) trajectory starting at 10087.

Original entry on oeis.org

10087, 30262, 15131, 45394, 22697, 68092, 34046, 17023, 51070, 25535, 76606, 38303, 114910, 57455, 172366, 86183, 258550, 129275, 387826, 193913, 581740, 290870, 145435, 436306, 218153, 654460, 327230, 163615, 490846, 245423, 736270
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 03 2009

Keywords

Comments

10087 = A060412(6); a(A006577(10087)) = a(223) = 1;
a(n)=A161021(n-53)=A161023(n+100) for n with 208<=n<=228.
At step 221 becomes periodic: 4 2 1 4 2 1 4 2 1 ... - N. J. A. Sloane, Jul 27 2019

Crossrefs

Programs

  • Mathematica
    NestList[If[EvenQ[#],#/2,3#+1]&,10087,30] (* Harvey P. Dale, Jul 25 2023 *)

Extensions

Edited by N. J. A. Sloane, Jul 27 2019

A161023 Collatz trajectory starting at 35655.

Original entry on oeis.org

35655, 106966, 53483, 160450, 80225, 240676, 120338, 60169, 180508, 90254, 45127, 135382, 67691, 203074, 101537, 304612, 152306, 76153, 228460, 114230, 57115, 171346, 85673, 257020, 128510, 64255, 192766, 96383, 289150, 144575, 433726
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 03 2009

Keywords

Comments

35655 = A060412(7); a(A006577(35655)) = a(323) = 1.
a(n) = A161021(n-153) for n with 297 <= n <= 323;
a(n) = A161022(n-100) for n with 308 <= n <= 323.
At step 321 becomes periodic: 4 2 1 4 2 1 4 2 1 ... - N. J. A. Sloane, Jul 27 2019

Crossrefs

Cf. A008884.

Programs

  • Mathematica
    NestWhileList[If[EvenQ[#],#/2,3#+1]&,35655,#>1&] (* Harvey P. Dale, Apr 28 2016 *)

Extensions

Edited by N. J. A. Sloane, Jul 27 2019

A217934 Records in A102419.

Original entry on oeis.org

0, 1, 6, 11, 96, 132, 171, 220, 267, 269, 282, 287, 298, 365, 401, 468, 476, 486, 502, 613, 644, 649, 706, 729, 892, 897, 988, 1122, 1161, 1177, 1187, 1445, 1471, 1575, 1614, 1639
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2012

Keywords

Comments

If the "1" is omitted, also records in A060445.

Examples

			See A102419.
		

Crossrefs

A340418 Indices in A339991 where records occur.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 19, 29, 39, 53, 61, 73, 79, 101, 149, 229
Offset: 1

Views

Author

Ya-Ping Lu, Jan 06 2021

Keywords

Comments

The records in A339991 corresponding the first 16 terms in this sequence are 0, 1, 4, 8, 9, 15, 22, 23, 24, 31, 32, 71, 88, 99, 104, 9267.
A339991(397), which is > 249275, is still unknown.
A339991(397) > 10^6. - Michael S. Branicky, Jan 09 2025

Crossrefs

Cf. A339991, A340008, A060412 (Collatz record indices).

Programs

  • Mathematica
    With[{s = Array[-1 + Length@ NestWhileList[Which[EvenQ@ #, #/2, PrimeQ@ #, #^2 - 1, True, # - 1] &, #, # > 1 &] &, 396]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Feb 12 2021 *)
  • Python
    from sympy import isprime
    rec = -1
    for n in range(1, 397):
        m, ct = n, 0
        while m > 1:
            if m%2 == 0: m //= 2
            elif isprime(m) == 1: m = m*m - 1
            else: m -= 1
            ct += 1
        if ct > rec: print(n); rec = ct

A243115 Starting values of the reduced Collatz function (A014682) where 2 to the power of the "dropping time" is greater than the starting value.

Original entry on oeis.org

3, 7, 11, 15, 23, 27, 31, 39, 47, 59, 63, 71, 79, 91, 95, 103, 111, 123, 127, 155, 159, 167, 175, 191, 199, 207, 219, 223, 231, 239, 251, 255, 283, 287, 303, 319, 327, 347, 359, 367, 383, 411, 415, 423, 447, 463, 479, 487, 495, 507, 511, 539, 543, 559, 575
Offset: 1

Views

Author

K. Spage, Aug 20 2014

Keywords

Comments

a(n) is the lowest positive starting value of the reduced Collatz function such that all starting values (>1) that are congruent to a(n) (mod 2^d) have the same dropping time (d). The dropping time here counts the (3x+1)/2 and the x/2 steps as listed in A126241. A number is included in this sequence if 2^A126241(a(n)) > a(n).
Starting values that produce new record dropping times as listed in A060412 are necessarily a subset of this sequence.
If at least one iteration is carried out before checking that the absolute iterated value has become less than or equal to the absolute starting value, then a(n) is the lowest positive starting value such that all starting values (positive, zero or negative) that are congruent to a(n) (mod 2^d) have the same dropping time (d). Defined like this, the sequence would start with 0, 1, 3, 7.
For k>0, A076227(k) is the number of terms between 2^k and 2^(k+1)-1. - Ruud H.G. van Tol, Dec 18 2022
All terms are congruent to 3 (mod 4) since any 1 (mod 4) has dropping time A126241(4k+1) = 2, for k>=1. - Ruud H.G. van Tol, Jan 11 2023

Examples

			3 is in this sequence because the dropping time starting with 3 is A126241(3) = 4 and 2^4 > 3.
		

Crossrefs

Programs

  • PARI
    is(t)= if(t<3||3!=t%4,0,my(x=t, d=0); until(x<=t, if(x%2, x=(x*3+1)/2, x/=2); d++); 2^d>t); \\ updated by Ruud H.G. van Tol, Jan 10 2023

Extensions

Offset 1 from Ruud H.G. van Tol, Jan 10 2023
Previous Showing 11-16 of 16 results.