cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A239699 Numbers n such that the number of Abelian groups of order n is equal to the number of non-Abelian groups of order n.

Original entry on oeis.org

6, 10, 14, 21, 22, 26, 28, 34, 38, 39, 44, 46, 55, 57, 58, 62, 63, 74, 76, 82, 86, 92, 93, 94, 105, 106, 111, 117, 118, 122, 124, 129, 134, 142, 146, 155, 158, 165, 166, 172, 178, 183, 188, 194, 195, 201, 202, 203, 205, 206, 214, 218, 219, 226, 231, 236, 237
Offset: 1

Views

Author

Michel Lagneau, Mar 24 2014

Keywords

Comments

Numbers n such that A000688(n) = A060689(n).

Examples

			6 is in the sequence because there are 2 groups of order 6: 1 commutative group and 1 non-commutative group. Then A000688(6) = A060689(6) = 1.
44 is in the sequence because there are 4 groups of order 44: 2 commutative groups and 2 non-commutative groups. Then A000688(44) = A060689(44) = 2.
		

Crossrefs

Programs

  • Mathematica
    lst:={};f[n_]:=Times@@PartitionsP/@Last/@FactorInteger@n;g[n_]:=FiniteGroupCount[n]-FiniteAbelianGroupCount[n];Do[If[f[n]==g[n],AppendTo[lst,n]],{n,500}];lst

A375483 Number of nonabelian groups of order m where m is the n-th squarefree number.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 3, 0, 0, 1, 0, 0, 1, 1, 0, 5, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 1, 0, 5, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 5, 1, 0, 5, 0, 1, 0, 1, 0, 0, 1, 3, 0, 0, 1, 0, 3, 0, 0
Offset: 1

Views

Author

Chai Wah Wu, Aug 17 2024

Keywords

References

  • O. Hölder. Die Gruppen mit quadratfreier Ordnungszahl. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, pages 211-219 (1895).

Crossrefs

Programs

  • Python
    from math import isqrt, prod
    from itertools import combinations
    from sympy import mobius, primefactors, npartitions, factorint
    def A375483(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        a = set(primefactors(m))
        return sum(prod((p**sum(1 for q in b if q%p==1)-1)//(p-1) for p in a-set(b)) for l in range(0,len(a)+1) for b in combinations(a,l))-prod(map(npartitions, factorint(m).values()))

Formula

a(n) = A060689(A005117(n)) = A375491(n) - A000688(A005117(n)).

A208663 Non-Abelian numbers: n such that A000001(n)/A000688(n) is a new record.

Original entry on oeis.org

1, 6, 12, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 2048
Offset: 1

Views

Author

Ben Branman, Feb 29 2012

Keywords

Examples

			For a(n)=12, there are 2 Abelian groups and 3 nonabelian groups, so the ratio A000001(12)/A000688(12)=5/2=2.5, which beats the previous record of 2, so 12 is in the sequence.
		

References

  • H. A. Bender, A determination of the groups of order p^5, Ann. of Math. (2) 29, pp. 61-72 (1927).
  • H. U. Besche and B. Eick, Construction of Finite Groups, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 387-404.
  • H. U. Besche and B. Eick, The Groups of Order at Most 1000 Except 512 and 768, Journal of Symbolic Computation, Vol. 27, No. 4, Apr 15 1999, pp. 405-413.
  • H. U. Besche, B. Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • G. A. Miller, Determination of all the groups of order 64, Amer. J. Math., 52 (1930), 617-634.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • E. Rodemich, The groups of order 128. J. Algebra 67 (1980), no. 1, 129-142.

Crossrefs

Programs

  • Mathematica
    s = {1}; a = 1; Do[b = FiniteGroupCount[n]/FiniteAbelianGroupCount[n];
      If[b > a, a = b; AppendTo[s, n]], {n, 1, 2047}]; s

Extensions

a(14) from Eric M. Schmidt, Aug 02 2012
Previous Showing 11-13 of 13 results.