cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A251671 a(n) = Sum_{k=0..n} C(n,k) * (2^k + 3^k)^k.

Original entry on oeis.org

1, 6, 180, 43398, 88701816, 1573206748746, 248688444559874580, 356335498302585834118638, 4663871943514788530035646937456, 558720685051192771669885091319459750546, 612058892657175926094223171960469926874935754700
Offset: 0

Views

Author

Paul D. Hanna, Jan 21 2015

Keywords

Examples

			G.f.: A(x) = 1 + 6*x + 180*x^2 + 43398*x^3 + 88701816*x^4 + 1573206748746*x^5 +...
where A(x) = 1/(1-x) + (2+3)*x/(1-x)^2 + (2^2+3^2)*x^2/(1-x)^3 + (2^3+3^3)^3*x^3/(1-x)^4 +...
ILLUSTRATION OF INITIAL TERMS:
a(0) = 1*(2^0+3^0)^0 = 1;
a(1) = 1*(2^0+3^0)^0 + 1*(2^1+3^1)^1 = 6;
a(2) = 1*(2^0+3^0)^0 + 2*(2^1+3^1)^1 + 1*(2^2+3^2)^2 = 180;
a(3) = 1*(2^0+3^0)^0 + 3*(2^1+3^1)^1 + 3*(2^2+3^2)^2 + 1*(2^3+3^3)^3 = 43398;
a(4) = 1*(2^0+3^0)^0 + 4*(2^1+3^1)^1 + 6*(2^2+3^2)^2 + 4*(2^3+3^3)^3 + 1*(2^4+3^4)^4 = 88701816; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * (2^k + 3^k)^k,{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Jan 25 2015 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k) * (2^k + 3^k)^k )}
    for(n=0, 15, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1); A=sum(m=0, n, (2^m + 3^m)^m * x^m / (1-x +x*O(x^n) )^(m+1) ); polcoeff(A, n)}
    for(n=0, 15, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} (2^n + 3^n)^n * x^n / (1-x)^(n+1).
a(n) ~ 3^(n^2). - Vaclav Kotesovec, Jan 25 2015

A326377 For any number n > 0, let f(n) be the polynomial of a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials of a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; a(n) = g(f(n) o f(n)) (where o denotes function composition).

Original entry on oeis.org

1, 2, 3, 4, 11, 12, 29, 8, 81, 1100, 59, 48, 101, 195478444, 40425, 16, 157, 648, 229, 440000, 64240097649, 1445390468875226977004, 313, 192, 214358881, 44574662297516497591170630280506162081362246142404, 19683, 9921285858330292941824, 421, 72765000, 547, 32
Offset: 1

Views

Author

Rémy Sigrist, Jul 02 2019

Keywords

Comments

This sequence is the main diagonal of A326376.

Examples

			The first terms, alongside the corresponding polynomials, are:
  n   a(n)  f(n)   f(n) o f(n)
  --  ----  -----  -----------
   1     1      0            0
   2     2      1            1
   3     3      x            x
   4     4      2            2
   5    11    x^2          x^4
   6    12    x+1          x+2
   7    29    x^3          x^9
   8     8      3            3
   9    81    2*x          4*x
  10  1100  x^2+1  x^4+2*x^2+2
  11    59    x^4         x^16
  12    48    x+2          x+4
		

Crossrefs

Programs

  • PARI
    g(p) = my (c=Vecrev(Vec(p))); prod (i=1, #c, if (c[i], prime(i)^c[i], 1))
    f(n, v='x) = my (f=factor(n)); sum (i=1, #f~, f[i, 2] * v^(primepi(f[i, 1]) - 1))
    a(n) = g(f(n, f(n)))

Formula

a(n) = A326376(n, n).
a(2^k) = 2^k for any k >= 0.
a(3^k) = A060722(k) for any k >= 0.
a(prime(k)) = A243896(k) for any k >= 1 (where prime(k) denotes the k-th prime number).

A346421 Triangular array read by rows. T(n,k) is the number of n X n matrices over GF(3) such that the sum of the dimensions of its eigenspaces taken over all its eigenvalues is k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 0, 3, 18, 24, 39, 3456, 8190, 5928, 2109, 7619508, 17094240, 13700700, 4215120, 417153, 149200289280, 335730157884, 267485755680, 85615372260, 8910314160, 346720179, 26394940582090344, 59388527912287392, 47325384827973252, 15262273318168800, 1648005959253654, 74268805562952, 1233891662727
Offset: 0

Views

Author

Geoffrey Critzer, Jul 16 2021

Keywords

Examples

			             1;
             0,            3;
            18,           24,           39;
          3456,         8190,         5928,        2109;
       7619508,     17094240,     13700700,     4215120,     417153;
  149200289280, 335730157884, 267485755680, 85615372260, 8910314160, 346720179;
		

Crossrefs

Cf. A346209 (column k=0), A290516 (main diagonal), A060722 (row sums).

Programs

  • Mathematica
    nn = 7; q = 3; b[p_, i_] := Count[p, i]; d[p_, i_] :=Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}];aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; A001037 =
    Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; g[u_, v_] :=
    Total[Map[v^Length[#] u^Total[#]/aut[1, #] &, Level[Table[IntegerPartitions[n], {n, 0, nn}], {2}]]]; Table[Take[(Table[ Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[g[u, v]^3 Product[Product[1/(1 - (u/q^r)^d), {r, 1, \[Infinity]}]^A001037[[d]], {d, 2, nn}], {u, 0, nn}], {u, v}])[[n]],n], {n, 1, nn}] // Grid
Previous Showing 11-13 of 13 results.