A251671 a(n) = Sum_{k=0..n} C(n,k) * (2^k + 3^k)^k.
1, 6, 180, 43398, 88701816, 1573206748746, 248688444559874580, 356335498302585834118638, 4663871943514788530035646937456, 558720685051192771669885091319459750546, 612058892657175926094223171960469926874935754700
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 6*x + 180*x^2 + 43398*x^3 + 88701816*x^4 + 1573206748746*x^5 +... where A(x) = 1/(1-x) + (2+3)*x/(1-x)^2 + (2^2+3^2)*x^2/(1-x)^3 + (2^3+3^3)^3*x^3/(1-x)^4 +... ILLUSTRATION OF INITIAL TERMS: a(0) = 1*(2^0+3^0)^0 = 1; a(1) = 1*(2^0+3^0)^0 + 1*(2^1+3^1)^1 = 6; a(2) = 1*(2^0+3^0)^0 + 2*(2^1+3^1)^1 + 1*(2^2+3^2)^2 = 180; a(3) = 1*(2^0+3^0)^0 + 3*(2^1+3^1)^1 + 3*(2^2+3^2)^2 + 1*(2^3+3^3)^3 = 43398; a(4) = 1*(2^0+3^0)^0 + 4*(2^1+3^1)^1 + 6*(2^2+3^2)^2 + 4*(2^3+3^3)^3 + 1*(2^4+3^4)^4 = 88701816; ...
Programs
-
Mathematica
Table[Sum[Binomial[n,k] * (2^k + 3^k)^k,{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Jan 25 2015 *)
-
PARI
{a(n)=sum(k=0, n, binomial(n, k) * (2^k + 3^k)^k )} for(n=0, 15, print1(a(n), ", "))
-
PARI
{a(n)=local(A=1); A=sum(m=0, n, (2^m + 3^m)^m * x^m / (1-x +x*O(x^n) )^(m+1) ); polcoeff(A, n)} for(n=0, 15, print1(a(n), ", "))
Formula
G.f.: Sum_{n>=0} (2^n + 3^n)^n * x^n / (1-x)^(n+1).
a(n) ~ 3^(n^2). - Vaclav Kotesovec, Jan 25 2015
Comments