A208524
Triangle of coefficients of polynomials u(n,x) jointly generated with A208525; see the Formula section.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 6, 10, 5, 1, 10, 22, 23, 11, 1, 15, 40, 65, 60, 21, 1, 21, 65, 145, 195, 137, 43, 1, 28, 98, 280, 490, 518, 322, 85, 1, 36, 140, 490, 1050, 1484, 1372, 723, 171, 1, 45, 192, 798, 2016, 3570, 4368, 3447, 1624, 341, 1, 55, 255, 1230, 3570
Offset: 1
First five rows:
1
1...1
1...3....3
1...6....10...5
1...10...22...23...11
First five polynomials u(n,x):
1
1 + x
1 + 3x + 3x^2
1 + 6x + 10x^2 + 5x^3
1 + 10x + 22x^2 + 23x^3 + 11x^4
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208524 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208525 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (*A060816*)
Table[v[n, x] /. x -> 1, {n, 1, z}] (*|A084244|*)
Table[u[n, x] /. x -> -1, {n, 1, z}](*alt. row sums*)
Table[v[n, x] /. x -> -1, {n, 1, z}](*alt. row sums*)
A208525
Triangle of coefficients of polynomials v(n,x) jointly generated with A208524; see the Formula section.
Original entry on oeis.org
1, 2, 3, 3, 7, 5, 4, 12, 18, 11, 5, 18, 42, 49, 21, 6, 25, 80, 135, 116, 43, 7, 33, 135, 295, 381, 279, 85, 8, 42, 210, 560, 966, 1050, 638, 171, 9, 52, 308, 966, 2086, 2996, 2724, 1453, 341, 10, 63, 432, 1554, 4032, 7182, 8688, 6921, 3240, 683, 11, 75
Offset: 1
First five rows:
1
2...3
3...7....5
4...12...18...11
5...18...42...49...21
First five polynomials v(n,x):
1
2 + 3x
3 + 7x + 5x^2
4 + 12x + 18x^2 + 11x^3
5 + 18x + 42x^2 + 49x^3 + 21x^4
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208524 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208525 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (*A060816*)
Table[v[n, x] /. x -> 1, {n, 1, z}] (*|A084244|*)
Table[u[n, x] /. x -> -1, {n, 1, z}] (*alt. row sums*)
Table[v[n, x] /. x -> -1, {n, 1, z}] (*alt. row sums*)
A329774
a(n) = n+1 for n <= 2; otherwise a(n) = 3*a(n-3)+1.
Original entry on oeis.org
1, 2, 3, 4, 7, 10, 13, 22, 31, 40, 67, 94, 121, 202, 283, 364, 607, 850, 1093, 1822, 2551, 3280, 5467, 7654, 9841, 16402, 22963, 29524, 49207, 68890, 88573, 147622, 206671, 265720, 442867, 620014, 797161, 1328602, 1860043, 2391484, 3985807
Offset: 0
- Robert Fathauer, Email to N. J. A. Sloane, Oct 14 2019.
-
f:=proc(n) option remember;
if n<=2 then n+1 else 3*f(n-3)+1; fi; end;
[seq(f(n),n=0..50)];
-
Vec((1 + x + x^2 - 2*x^3) / ((1 - x)*(1 - 3*x^3)) + O(x^40)) \\ Colin Barker, Nov 27 2019
A182950
Joint-rank array of the numbers (3*i+2)*3^j, where i>=0, j>=0, by antidiagonals.
Original entry on oeis.org
1, 3, 2, 9, 7, 4, 27, 22, 12, 5, 81, 67, 36, 16, 6, 243, 202, 108, 49, 20, 8, 729, 607, 324, 148, 62, 25, 10, 2187, 1822, 972, 445, 188, 76, 30, 11, 6561, 5467, 2916, 1336, 566, 229, 90, 34, 13, 19683, 16402, 8748, 4009, 1700, 688, 270, 103, 39, 14
Offset: 1
Northwest corner:
1....3....9....27...
2....7...22....67...
4...12...36...108...
5...16...49...148...
-
M[i_,j_]:=j+Floor[Log[3*i/2+1]/Log[3]];
T[i_,j_]:=Sum[Floor[1/3+(3*i+2)*3^(j-k-1)],{k,0,M[i,j]}];
TableForm[Table[T[i,j],{i,0,9},{j,0,9}]]
A117137
Same as triangle in A117136, but omit final 1 from each row.
Original entry on oeis.org
1, 1, 2, 4, 1, 3, 6, 2, 7, 1, 4, 8, 3, 9, 2, 10, 1, 5, 10, 4, 11, 3, 12, 2, 13, 1, 6, 12, 5, 13, 4, 14, 3, 15, 2, 16, 1, 7, 14, 6, 15, 5, 16, 4, 17, 3, 18, 2, 19, 1
Offset: 0
Triangle begins:
Row 0: 1
Row 1: 1 2 4
Row 2: 1 3 6 2 7
Row 3: 1 4 8 3 9 2 10
Row 4: 1 5 10 4 11 3 12 2 13
...
The segments of
A046901 appear as rows 2, 7, 22, 67, ... (
A060816) of this array.
A238055
a(n) = (13*3^n-1)/2.
Original entry on oeis.org
6, 19, 58, 175, 526, 1579, 4738, 14215, 42646, 127939, 383818, 1151455, 3454366, 10363099, 31089298, 93267895, 279803686, 839411059, 2518233178, 7554699535, 22664098606, 67992295819, 203976887458, 611930662375, 1835791987126, 5507375961379, 16522127884138
Offset: 0
Ternary....................Decimal
20...............................6
201.............................19
2011............................58
20111..........................175
201111.........................526
2011111.......................1579
20111111......................4738
201111111....................14215, etc.
A244762
a(n) = (5*3^n-2*n-1)/4.
Original entry on oeis.org
1, 3, 10, 32, 99, 301, 908, 2730, 8197, 24599, 73806, 221428, 664295, 1992897, 5978704, 17936126, 53808393, 161425195, 484275602, 1452826824, 4358480491, 13075441493, 39226324500, 117678973522, 353036920589, 1059110761791, 3177332285398, 9531996856220, 28595990568687, 85787971706089, 257363915118296
Offset: 0
-
CoefficientList[Series[(1-2*x+2*x^2)/((1-3*x)*(1-x)^2), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 06 2014 *)
A220946
Expansion of (1+2*x+2*x^2-x^3)/((1-x)*(1+x)*(1-3x^2)).
Original entry on oeis.org
1, 2, 6, 7, 21, 22, 66, 67, 201, 202, 606, 607, 1821, 1822, 5466, 5467, 16401, 16402, 49206, 49207, 147621, 147622, 442866, 442867, 1328601, 1328602, 3985806, 3985807, 11957421, 11957422, 35872266, 35872267, 107616801, 107616802, 322850406, 322850407
Offset: 0
-
LinearRecurrence[{0, 4, 0, -3}, {1, 2, 6, 7}, 40] (* T. D. Noe, Apr 17 2013 *)
A238206
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) is A007494(k) and T(n,k) = 3*T(n-1,k) + 1 for n>0.
Original entry on oeis.org
0, 2, 1, 3, 7, 4, 5, 10, 22, 13, 6, 16, 31, 67, 40, 8, 19, 49, 94, 202, 121, 9, 25, 58, 148, 283, 607, 364, 11, 28, 76, 175, 445, 850, 1822, 1093, 12, 34, 85, 229, 526, 1336, 2551, 5467, 3280, 14, 37, 103, 256, 688, 1579, 4009, 7654, 16402, 9841, 15, 43, 112, 310
Offset: 0
Square array begins:
0, 2, 3, 5, 6, 8, 9, ...
1, 7, 10, 16, 19, 25, 28, ...
4, 22, 31, 49, 58, 76, 85, ...
13, 67, 94, 148, 175, 229, 256, ...
40, 202, 283, 445, 523, 688, 769, ...
121, 607, 850, 1336, 1579, 2065, 2308, ...
364, 1822, 2551, 4009, 4738, 6196, 6925, ...
1093, 5467, 7654, 12028, 14215, 18589, 20776, ...
3280, 16402, 22963, 36085, 42646, 55768, 62329, ...
9841, 49207, 68890, 108256, 127939, 167305, 186988, ...
...
Comments