cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A208524 Triangle of coefficients of polynomials u(n,x) jointly generated with A208525; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 10, 5, 1, 10, 22, 23, 11, 1, 15, 40, 65, 60, 21, 1, 21, 65, 145, 195, 137, 43, 1, 28, 98, 280, 490, 518, 322, 85, 1, 36, 140, 490, 1050, 1484, 1372, 723, 171, 1, 45, 192, 798, 2016, 3570, 4368, 3447, 1624, 341, 1, 55, 255, 1230, 3570
Offset: 1

Views

Author

Clark Kimberling, Feb 29 2012

Keywords

Comments

Alternating row sums: 1,0,1,0,1,0,1,0,...

Examples

			First five rows:
1
1...1
1...3....3
1...6....10...5
1...10...22...23...11
First five polynomials u(n,x):
1
1 + x
1 + 3x + 3x^2
1 + 6x + 10x^2 + 5x^3
1 + 10x + 22x^2 + 23x^3 + 11x^4
		

Crossrefs

Cf. A208525.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208524 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208525 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}] (*A060816*)
    Table[v[n, x] /. x -> 1, {n, 1, z}] (*|A084244|*)
    Table[u[n, x] /. x -> -1, {n, 1, z}](*alt. row sums*)
    Table[v[n, x] /. x -> -1, {n, 1, z}](*alt. row sums*)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A208525 Triangle of coefficients of polynomials v(n,x) jointly generated with A208524; see the Formula section.

Original entry on oeis.org

1, 2, 3, 3, 7, 5, 4, 12, 18, 11, 5, 18, 42, 49, 21, 6, 25, 80, 135, 116, 43, 7, 33, 135, 295, 381, 279, 85, 8, 42, 210, 560, 966, 1050, 638, 171, 9, 52, 308, 966, 2086, 2996, 2724, 1453, 341, 10, 63, 432, 1554, 4032, 7182, 8688, 6921, 3240, 683, 11, 75
Offset: 1

Views

Author

Clark Kimberling, Feb 29 2012

Keywords

Comments

Alternating row sums: 1,-1,1,-1,1,-1,1,-1,...

Examples

			First five rows:
1
2...3
3...7....5
4...12...18...11
5...18...42...49...21
First five polynomials v(n,x):
1
2 + 3x
3 + 7x + 5x^2
4 + 12x + 18x^2 + 11x^3
5 + 18x + 42x^2 + 49x^3 + 21x^4
		

Crossrefs

Cf. A208524.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208524 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208525 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}] (*A060816*)
    Table[v[n, x] /. x -> 1, {n, 1, z}] (*|A084244|*)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (*alt. row sums*)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (*alt. row sums*)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A329774 a(n) = n+1 for n <= 2; otherwise a(n) = 3*a(n-3)+1.

Original entry on oeis.org

1, 2, 3, 4, 7, 10, 13, 22, 31, 40, 67, 94, 121, 202, 283, 364, 607, 850, 1093, 1822, 2551, 3280, 5467, 7654, 9841, 16402, 22963, 29524, 49207, 68890, 88573, 147622, 206671, 265720, 442867, 620014, 797161, 1328602, 1860043, 2391484, 3985807
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2019

Keywords

Comments

Robert Fathauer observed that if the "warp and woof" construction used by Jim Conant in his recursive dissection of a square (see A328078) is applied to a triangle, one obtains the Sierpinski gasket.
The present sequence gives the number of regions after the n-th generation of this dissection of a triangle.

References

  • Robert Fathauer, Email to N. J. A. Sloane, Oct 14 2019.

Crossrefs

A mixture of A003462, A060816, and A237930. Cf. A328078.

Programs

  • Maple
    f:=proc(n) option remember;
    if n<=2 then n+1 else 3*f(n-3)+1; fi; end;
    [seq(f(n),n=0..50)];
  • PARI
    Vec((1 + x + x^2 - 2*x^3) / ((1 - x)*(1 - 3*x^3)) + O(x^40)) \\ Colin Barker, Nov 27 2019

Formula

From Colin Barker, Nov 27 2019: (Start)
G.f.: (1 + x + x^2 - 2*x^3) / ((1 - x)*(1 - 3*x^3)).
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) for n>3.
(End)

A182950 Joint-rank array of the numbers (3*i+2)*3^j, where i>=0, j>=0, by antidiagonals.

Original entry on oeis.org

1, 3, 2, 9, 7, 4, 27, 22, 12, 5, 81, 67, 36, 16, 6, 243, 202, 108, 49, 20, 8, 729, 607, 324, 148, 62, 25, 10, 2187, 1822, 972, 445, 188, 76, 30, 11, 6561, 5467, 2916, 1336, 566, 229, 90, 34, 13, 19683, 16402, 8748, 4009, 1700, 688, 270, 103, 39, 14
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2010

Keywords

Comments

Joint-rank arrays are defined in the first comment at A182801. As for any joint-rank array, A182950 is a permutation of the positive integers, but, a fortiori, A182950 is an interspersion: after initial terms every row is interspersed with all other rows. The numbers (3*i+2)*3^j as an array comprise A182830; and sorted, possibly A026179.
(row 1)=A000244.
(row 2)=A060816.
(row 3)=A003946.
(row 4)=A052909.
(row 5)=A027107?

Examples

			Northwest corner:
1....3....9....27...
2....7...22....67...
4...12...36...108...
5...16...49...148...
		

Crossrefs

Programs

  • Mathematica
     M[i_,j_]:=j+Floor[Log[3*i/2+1]/Log[3]];
     T[i_,j_]:=Sum[Floor[1/3+(3*i+2)*3^(j-k-1)],{k,0,M[i,j]}];
     TableForm[Table[T[i,j],{i,0,9},{j,0,9}]]

A117137 Same as triangle in A117136, but omit final 1 from each row.

Original entry on oeis.org

1, 1, 2, 4, 1, 3, 6, 2, 7, 1, 4, 8, 3, 9, 2, 10, 1, 5, 10, 4, 11, 3, 12, 2, 13, 1, 6, 12, 5, 13, 4, 14, 3, 15, 2, 16, 1, 7, 14, 6, 15, 5, 16, 4, 17, 3, 18, 2, 19, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 21 2006

Keywords

Comments

Row n has length 2n+1.

Examples

			Triangle begins:
Row 0: 1
Row 1: 1 2 4
Row 2: 1 3 6 2 7
Row 3: 1 4 8 3 9 2 10
Row 4: 1 5 10 4 11 3 12 2 13
...
		

Crossrefs

The segments of A046901 appear as rows 2, 7, 22, 67, ... (A060816) of this array.

A238055 a(n) = (13*3^n-1)/2.

Original entry on oeis.org

6, 19, 58, 175, 526, 1579, 4738, 14215, 42646, 127939, 383818, 1151455, 3454366, 10363099, 31089298, 93267895, 279803686, 839411059, 2518233178, 7554699535, 22664098606, 67992295819, 203976887458, 611930662375, 1835791987126, 5507375961379, 16522127884138
Offset: 0

Views

Author

Philippe Deléham, Feb 17 2014

Keywords

Examples

			Ternary....................Decimal
20...............................6
201.............................19
2011............................58
20111..........................175
201111.........................526
2011111.......................1579
20111111......................4738
201111111....................14215, etc.
		

Crossrefs

Formula

a(n) = 3*a(n-1) + 1, a(0)=6.
a(n) = 4*a(n-1) - 3*a(n-2), a(0)=6, a(1)=19.
a(n) = 2*A237930(n) - A003462(n).
a(n) = A052909(n+1) + A000244(n).
a(n) = A237930(n) + A000244(n+1).
a(n) = 13*A003462(n) + 6.
G.f.: (6-5*x)/((1-x)*(1-3*x)).
E.g.f.: exp(x)*(13*exp(2*x) - 1)/2. - Stefano Spezia, Aug 28 2023

A244762 a(n) = (5*3^n-2*n-1)/4.

Original entry on oeis.org

1, 3, 10, 32, 99, 301, 908, 2730, 8197, 24599, 73806, 221428, 664295, 1992897, 5978704, 17936126, 53808393, 161425195, 484275602, 1452826824, 4358480491, 13075441493, 39226324500, 117678973522, 353036920589, 1059110761791, 3177332285398, 9531996856220, 28595990568687, 85787971706089, 257363915118296
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A060816 (first differences).

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x+2*x^2)/((1-3*x)*(1-x)^2), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 06 2014 *)

Formula

a(n+1) = 3*a(n) + n.
G.f.: (1-2*x+2*x^2) / ((1-3*x)*(1-x)^2).
E.g.f.: exp(x)*(5*exp(2*x) - 2*x - 1)/4. - Stefano Spezia, Aug 28 2023

A220946 Expansion of (1+2*x+2*x^2-x^3)/((1-x)*(1+x)*(1-3x^2)).

Original entry on oeis.org

1, 2, 6, 7, 21, 22, 66, 67, 201, 202, 606, 607, 1821, 1822, 5466, 5467, 16401, 16402, 49206, 49207, 147621, 147622, 442866, 442867, 1328601, 1328602, 3985806, 3985807, 11957421, 11957422, 35872266, 35872267, 107616801, 107616802, 322850406, 322850407
Offset: 0

Views

Author

Philippe Deléham, Apr 14 2013

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 4, 0, -3}, {1, 2, 6, 7}, 40] (* T. D. Noe, Apr 17 2013 *)

Formula

a(n) = a(n-1)+1 if n odd, a(n) = a(n-1)*3 if n even.
a(2n) = A134931(n), a(2n+1) = A060816(n+1).
a(n) = 4*a(n-2) - 3*a(n-4) with a(0)=1, a(1)=2, a(2)=6, a(3)=7.

A238206 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) is A007494(k) and T(n,k) = 3*T(n-1,k) + 1 for n>0.

Original entry on oeis.org

0, 2, 1, 3, 7, 4, 5, 10, 22, 13, 6, 16, 31, 67, 40, 8, 19, 49, 94, 202, 121, 9, 25, 58, 148, 283, 607, 364, 11, 28, 76, 175, 445, 850, 1822, 1093, 12, 34, 85, 229, 526, 1336, 2551, 5467, 3280, 14, 37, 103, 256, 688, 1579, 4009, 7654, 16402, 9841, 15, 43, 112, 310
Offset: 0

Views

Author

Philippe Deléham, Feb 20 2014

Keywords

Comments

Permutation of nonnegative integers.

Examples

			Square array begins:
0, 2, 3, 5, 6, 8, 9, ...
1, 7, 10, 16, 19, 25, 28, ...
4, 22, 31, 49, 58, 76, 85, ...
13, 67, 94, 148, 175, 229, 256, ...
40, 202, 283, 445, 523, 688, 769, ...
121, 607, 850, 1336, 1579, 2065, 2308, ...
364, 1822, 2551, 4009, 4738, 6196, 6925, ...
1093, 5467, 7654, 12028, 14215, 18589, 20776, ...
3280, 16402, 22963, 36085, 42646, 55768, 62329, ...
9841, 49207, 68890, 108256, 127939, 167305, 186988, ...
...
		

Crossrefs

Formula

T(n,k) = T(0,k)*3^n + T(n,0) where T(0,k) = (6*k + 1 -(-1)^k)/4 = A007494(k) and T(n,0) = (3^n - 1)/2 = A003462(n).
Previous Showing 11-19 of 19 results.