cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A108371 Table of primal compositional powers (n o)^k, where "o" denotes the primal composition operator, as illustrated in sequence A106177 and where (n o)^k = n o ... o n, with k occurrences of n.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 1, 2, 1, 5, 1, 1, 2, 1, 6, 1, 1, 1, 2, 1, 7, 6, 1, 1, 1, 2, 1, 8, 1, 6, 1, 1, 1, 2, 1, 9, 1, 1, 6, 1, 1, 1, 2, 1, 10, 9, 1, 1, 6, 1, 1, 1, 2, 1, 11, 10, 9, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 10, 9, 1, 1, 6, 1, 1, 1, 2, 1, 13, 18, 1, 10, 9, 1, 1, 6, 1, 1, 1, 2, 1, 14, 1, 12, 1, 10, 9, 1, 1, 6
Offset: 1

Views

Author

Jon Awbrey, Jun 07 2005

Keywords

Examples

			Table: T(n,k) = (n o)^k
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `T(n,k)
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `\ /
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 1 . 1
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `\ / \ /
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 2 . 1 . 2
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 3 . 2 . 1 . 3
` ` ` ` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 . 3 . 2 . 1 . 4
` ` ` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` ` ` 5 . 4 . 1 . 2 . 1 . 5
` ` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` ` 6 . 5 . 1 . 1 . 2 . 1 . 6
` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` 7 . 6 . 1 . 1 . 1 . 2 . 1 . 7
` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` 8 . 7 . 6 . 1 . 1 . 1 . 2 . 1 . 8
` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` 9 . 8 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 9
` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` `10 . 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 10
` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` `11 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 11
` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` `12 . 11. 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 12
` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` `13 . 12. 1 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 13
` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` `14 . 13. 18. 1 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 14
` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` `15 . 14. 1 . 12. 1 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 15
` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` `16 . 15. 14. 1 . 18. 1 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 16
		

Crossrefs

A106178 Functional composition table for "n o m" = "n composed with m", where n and m are the "primal codes" of finite partial functions on the positive integers and 1 is the code for the empty function, but omitting the trivial values of 1 at the margins of the table.

Original entry on oeis.org

2, 3, 1, 1, 1, 4, 5, 2, 9, 1, 6, 1, 1, 1, 2, 7, 1, 25, 1, 3, 1, 1, 1, 36, 1, 2, 1, 8, 1, 1, 49, 1, 5, 1, 27, 1, 10, 3, 1, 1, 6, 1, 1, 1, 2, 11, 1, 1, 2, 7, 1, 125, 4, 3, 1, 3, 1, 100, 1, 1, 1, 216, 1, 1, 1, 4, 13, 2, 121, 1, 3, 1, 343, 1, 5, 1, 9, 1, 14, 1, 9, 1, 10, 1, 1, 1, 6, 1, 2, 1, 2
Offset: 2

Views

Author

Jon Awbrey, May 28 2005

Keywords

Comments

This sequence is derived from A106177 by removing the "obvious" values of 1 at the margins of the triangular array.

Examples

			` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` n o m
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `\ /
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 1 . 1
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `\ / \ /
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 2 . ` . 2
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 3 . ` . ` . 3
` ` ` ` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 . ` . 2 . ` . 4
` ` ` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` ` ` 5 . ` . 3 . 1 . ` . 5
` ` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` ` 6 . ` . 1 . 1 . 4 . ` . 6
` ` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` ` 7 . ` . 5 . 2 . 9 . 1 . ` . 7
` ` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` ` 8 . ` . 6 . 1 . 1 . 1 . 2 . ` . 8
` ` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` ` ` 9 . ` . 7 . 1 . 25. 1 . 3 . 1 . ` . 9
` ` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` ` `10 . ` . 1 . 1 . 36. 1 . 2 . 1 . 8 . ` . 10
` ` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` ` `11 . ` . 1 . 1 . 49. 1 . 5 . 1 . 27. 1 . ` . 11
` ` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` ` `12 . ` . 10. 3 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . ` . 12
` ` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` ` `13 . ` . 11. 1 . 1 . 2 . 7 . 1 .125. 4 . 3 . 1 . ` . 13
` ` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` ` `14 . ` . 3 . 1 .100. 1 . 1 . 1 .216. 1 . 1 . 1 . 4 . ` . 14
` ` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` ` `15 . ` . 13. 2 .121. 1 . 3 . 1 .343. 1 . 5 . 1 . 9 . 1 . ` . 15
` ` `\ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
` `16 . ` . 14. 1 . 9 . 1 . 10. 1 . 1 . 1 . 6 . 1 . 2 . 1 . 2 . ` . 16
		

Crossrefs

A111793 Triangle T(g, h) = number of rotes of weight g and height h, both in gammas.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 10, 8, 1, 24, 32, 16
Offset: 1

Views

Author

Jon Awbrey, Aug 26 2005, revised Aug 28 2005

Keywords

Comments

T(g, h) = |{positive integers m : A062537(m) = g and A109301(m) = h}|.
Row sums = A061396. Column sums = A109300. See A111792 for details.
Main diagonal T(j, j) = 2^(j-1) for j > 0, T(0, 0) = 1.

Examples

			Table T(g, h), omitting zeros, starts out as follows:
g\h| 0 ` 1 ` 2 ` 3 ` 4 ` 5
---+-----------------------
`0 | 1
`1 | ` ` 1
`2 | ` ` ` ` 2
`3 | ` ` ` ` 2 ` 4
`4 | ` ` ` ` 2 `10 ` 8
`5 | ` ` ` ` 1 `24 `32 `16
		

Crossrefs

A112868 Positive integers sorted by rote weight and primal code characteristic.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 8, 16, 10, 12, 14, 18, 11, 13, 17, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536, 22, 26, 34, 36, 38, 46, 50, 54, 98, 106, 125, 162, 2401, 15, 21, 29, 31, 37, 41, 43, 59, 61, 67, 83, 97, 103, 121, 131, 169, 227, 241, 243, 289, 311, 34, 361
Offset: 1

Views

Author

Jon Awbrey, Oct 13 2005

Keywords

Comments

Positive integers m sorted by g(m) = A062537(m) and q(m) = A108352(m).

Examples

			Primal Functions, Primal Codes, Sort Parameters, Subtotals
==========================================================
Primal Function | ` ` ` Primal Code ` = ` a | g q | s | t
==========================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 1 | 1 | 1
==========================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 0 | 1 | 1
==========================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 | 2 | 2
==========================================================
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 0 | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 0 | 2 |
----------------+---------------------------+-----+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 2 | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 2 | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 2 | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 2 | 4 | 6
==========================================================
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 0 | ` |
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 0 | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 0 | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 0 | 4 |
----------------+---------------------------+-----+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 2 | ` |
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 2 | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 2 | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 2 | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 2 | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 2 | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 2 | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 2 | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 2 | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 2 | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 2 | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 2 | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 2 | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 2 | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 2 | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 2 |16 |20
==========================================================
a = this sequence
g = rote weight in gammas = A062537
q = primal code character = A108352
s = count in (g, q) class = A112869
t = count in weight class = A061396
		

Crossrefs

A112846 Number of riffs on n or fewer nodes. Number of rotes on 2n+1 or fewer nodes.

Original entry on oeis.org

1, 2, 4, 10, 30, 103, 384, 1508, 6126, 25513, 108278, 466523, 2034981, 8968746, 39875940, 138760603, 178636543, 3026583484, 16028356176, 75647274620, 350111055991, 1618175863400, 7495933933620, 34821723061950
Offset: 0

Views

Author

Jon Awbrey, Oct 04 2005, based on calculations by Vladeta Jovovic and David W. Wilson

Keywords

Comments

Partial sums of A061396.

Crossrefs

A111792 Positive integers sorted by rote weight (A062537) and rote height (A109301).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 8, 16, 12, 18, 10, 13, 14, 23, 25, 27, 49, 64, 81, 512, 11, 17, 19, 32, 53, 128, 256, 65536
Offset: 1

Views

Author

Jon Awbrey, Aug 25 2005, revised Aug 27 2005

Keywords

Examples

			Table of Integers, Primal Codes, Sort Parameters and Subtotals
` ` a ` code` ` | g h | s | t
----------------+-----+---+---
` ` 1 = { } ` ` | 0 0 | 1 | 1
----------------+-----+---+---
` ` 2 = 1:1 ` ` | 1 1 | 1 | 1
----------------+-----+---+---
` ` 3 = 2:1 ` ` | 2 2 | ` |
` ` 4 = 1:2 ` ` | 2 2 | 2 | 2
----------------+-----+---+---
` ` 6 = 1:1 2:1 | 3 2 | ` |
` ` 9 = 2:2 ` ` | 3 2 | 2 |
----------------+-----+---+---
` ` 5 = 3:1 ` ` | 3 3 | ` |
` ` 7 = 4:1 ` ` | 3 3 | ` |
` ` 8 = 1:3 ` ` | 3 3 | ` |
` `16 = 1:4 ` ` | 3 3 | 4 | 6
----------------+-----+---+---
` `12 = 1:2 2:1 | 4 2 | ` |
` `18 = 1:1 2:2 | 4 2 | 2 |
----------------+-----+---+---
` `10 = 1:1 3:1 | 4 3 | ` |
` `13 = 6:1 ` ` | 4 3 | ` |
` `14 = 1:1 4:1 | 4 3 | ` |
` `23 = 9:1 ` ` | 4 3 | ` |
` `25 = 3:2 ` ` | 4 3 | ` |
` `27 = 2:3 ` ` | 4 3 | ` |
` `49 = 4:2 ` ` | 4 3 | ` |
` `64 = 1:6 ` ` | 4 3 | ` |
` `81 = 2:4 ` ` | 4 3 | ` |
` 512 = 1:9 ` ` | 4 3 |10 |
----------------+-----+---+---
` `11 = 5:1 ` ` | 4 4 | ` |
` `17 = 7:1 ` ` | 4 4 | ` |
` `19 = 8:1 ` ` | 4 4 | ` |
` `32 = 1:5 ` ` | 4 4 | ` |
` `53 = 16:1` ` | 4 4 | ` |
` 128 = 1:7 ` ` | 4 4 | ` |
` 256 = 1:8 ` ` | 4 4 | ` |
65536 = 1:16` ` | 4 4 | 8 |20
----------------+-----+---+---
a = this sequence
g = rote weight in gammas = A062537
h = rote height in gammas = A109301
s = count in (g, h) class = A111793
t = count in weight class = A061396
		

Crossrefs

A112095 Positive integers sorted by rote weight, rote height and rote wayage.

Original entry on oeis.org

1, 2, 3, 4, 9, 6, 5, 7, 8, 16, 12, 18, 13, 23, 25, 27, 49, 64, 81, 512, 10, 14, 11, 17, 19, 32, 53, 128, 256, 65536, 36, 37, 61, 125, 169, 343, 529, 625, 729, 2401, 4096, 19683, 262144, 15, 20, 21, 24, 26, 28, 46, 48, 50, 54, 98, 162, 29, 41, 43, 83, 97, 103, 121, 227
Offset: 1

Views

Author

Jon Awbrey, Sep 08 2005, corrected Oct 11 2005

Keywords

Comments

For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote height in gammas is h(m) = A109301(m) and the rote wayage or root degree is w(m) = omega(m) = A001221(m).

Examples

			Table of Primal Functions, Codes, Sort Parameters and Subtotals
================================================================
Primal Function | ` ` ` Primal Code ` = ` a | g h w | r | s | t
================================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 0 | 1 | 1 | 1
================================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 1 | 1 | 1 | 1
================================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 1 | ` | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 1 | 2 | 2 | 2
================================================================
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 2 1 | 1 | ` |
----------------+---------------------------+-------+---+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 2 2 | 1 | 2 |
----------------+---------------------------+-------+---+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 3 1 | ` | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 3 1 | ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 3 1 | ` | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 3 1 | 4 | 4 | 6
================================================================
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 2 2 | ` | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 2 2 | 2 | 2 |
----------------+---------------------------+-------+---+---+---
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 3 1 | ` | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 3 1 | ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 3 1 | ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 3 1 | ` | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 3 1 | ` | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 3 1 | ` | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 3 1 | ` | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 3 1 | 8 | ` |
----------------+---------------------------+-------+---+---+---
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 3 2 | ` | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 3 2 | 2 |10 |
----------------+---------------------------+-------+---+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 4 1 | ` | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 4 1 | ` | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 4 1 | ` | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 4 1 | ` | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 4 1 | ` | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 4 1 | ` | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 4 1 | ` | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 4 1 | 8 | 8 |20
================================================================
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `36 | 5 2 2 | 1 | 1 |
----------------+---------------------------+-------+---+---+---
12:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `37 | 5 3 1 | ` | ` |
18:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `61 | 5 3 1 | ` | ` |
3:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 125 | 5 3 1 | ` | ` |
6:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 169 | 5 3 1 | ` | ` |
4:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 343 | 5 3 1 | ` | ` |
9:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 529 | 5 3 1 | ` | ` |
3:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 625 | 5 3 1 | ` | ` |
2:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 729 | 5 3 1 | ` | ` |
4:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2401 | 5 3 1 | ` | ` |
1:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `4096 | 5 3 1 | ` | ` |
2:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 19683 | 5 3 1 | ` | ` |
1:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `262144 | 5 3 1 |12 | ` |
----------------+---------------------------+-------+---+---+---
2:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `15 | 5 3 2 | ` | ` |
1:2 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `20 | 5 3 2 | ` | ` |
2:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `21 | 5 3 2 | ` | ` |
1:3 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `24 | 5 3 2 | ` | ` |
1:1 6:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `26 | 5 3 2 | ` | ` |
1:2 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `28 | 5 3 2 | ` | ` |
1:1 9:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `46 | 5 3 2 | ` | ` |
1:4 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `48 | 5 3 2 | ` | ` |
1:1 3:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `50 | 5 3 2 | ` | ` |
1:1 2:3 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `54 | 5 3 2 | ` | ` |
1:1 4:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `98 | 5 3 2 | ` | ` |
1:1 2:4 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 162 | 5 3 2 |12 |24 |
----------------+---------------------------+-------+---+---+---
10:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `29 | 5 4 1 | ` | ` |
13:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `41 | 5 4 1 | ` | ` |
14:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `43 | 5 4 1 | ` | ` |
23:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `83 | 5 4 1 | ` | ` |
25:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `97 | 5 4 1 | ` | ` |
27:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 103 | 5 4 1 | ` | ` |
5:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 121 | 5 4 1 | ` | ` |
49:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 227 | 5 4 1 | ` | ` |
2:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 243 | 5 4 1 | ` | ` |
7:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 289 | 5 4 1 | ` | ` |
64:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 311 | 5 4 1 | ` | ` |
8:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 361 | 5 4 1 | ` | ` |
81:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 419 | 5 4 1 | ` | ` |
1:10` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1024 | 5 4 1 | ` | ` |
2:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2187 | 5 4 1 | ` | ` |
16:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2809 | 5 4 1 | ` | ` |
512:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `3671 | 5 4 1 | ` | ` |
2:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `6561 | 5 4 1 | ` | ` |
1:13` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `8192 | 5 4 1 | ` | ` |
1:14` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 16384 | 5 4 1 | ` | ` |
1:23` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` 8388608 | 5 4 1 | ` | ` |
1:25` ` ` ` ` ` | ` ` ` ` ` ` ` ` `33554432 | 5 4 1 | ` | ` |
2:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` `43046721 | 5 4 1 | ` | ` |
1:27` ` ` ` ` ` | ` ` ` ` ` ` ` ` 134217728 | 5 4 1 | ` | ` |
1:49` ` ` ` ` ` | ` ` ` ` ` 562949953421312 | 5 4 1 | ` | ` |
1:64` ` ` ` ` ` | ` ` `18446744073709551616 | 5 4 1 | ` | ` |
1:81` ` ` ` ` ` | 2417851639229258349412352 | 5 4 1 | ` | ` |
1:512 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^512 | 5 4 1 |28 | ` |
----------------+---------------------------+-------+---+---+---
1:1 5:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `22 | 5 4 2 | ` | ` |
1:1 7:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `34 | 5 4 2 | ` | ` |
1:1 8:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `38 | 5 4 2 | ` | ` |
1:1 16:1` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 106 | 5 4 2 | 4 |32 |
----------------+---------------------------+-------+---+---+---
11:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `31 | 5 5 1 | ` | ` |
17:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `59 | 5 5 1 | ` | ` |
19:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `67 | 5 5 1 | ` | ` |
32:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 131 | 5 5 1 | ` | ` |
53:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 241 | 5 5 1 | ` | ` |
128:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 719 | 5 5 1 | ` | ` |
256:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1619 | 5 5 1 | ` | ` |
1:11` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2048 | 5 5 1 | ` | ` |
1:17` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `131072 | 5 5 1 | ` | ` |
1:19` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `524288 | 5 5 1 | ` | ` |
65536:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` `821641 | 5 5 1 | ` | ` |
1:32` ` ` ` ` ` | ` ` ` ` ` ` ` `4294967296 | 5 5 1 | ` | ` |
1:53` ` ` ` ` ` | ` ` ` ` `9007199254740992 | 5 5 1 | ` | ` |
1:128 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^128 | 5 5 1 | ` | ` |
1:256 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^256 | 5 5 1 | ` | ` |
1:65536 ` ` ` ` | ` ` ` ` ` ` ` ` ` 2^65536 | 5 5 1 |16 |16 |73
================================================================
a = this sequence
g = rote weight in gammas = A062537
h = rote height in gammas = A109301
w = rote wayage in gammas = A001221
r = number in (g,h,w) set = A112096
s = count in (g, h) class = A111793
t = count in weight class = A061396
		

Crossrefs

A112096 Tetrahedron T(g, h, w) = number of rotes of weight g, height h, wayage w.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 2, 8, 2, 8, 1, 12, 12, 28, 4, 16
Offset: 1

Views

Author

Jon Awbrey, Sep 08 2005, revised Sep 27 2005

Keywords

Comments

T(g, h, w) = |{m : A062537(m) = g, A109301(m) = h, A001221(m) = w}|.
This is the column that is labeled "r" in the tabulation of A112095.
g = h > 0 implies w = 1 and T(j, j, 1) = 2^(j-1) = A000079(j-1).

Examples

			Table T(g, h, w), omitting empty cells, starts out as follows:
g\(h,w) | (0,0) (1,1) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2) (5,1)
--------+-------------------------------------------------------
0 ` ` ` | ` 1
1 ` ` ` | ` ` ` ` 1
2 ` ` ` | ` ` ` ` ` ` ` 2
3 ` ` ` | ` ` ` ` ` ` ` 1 ` ` 1 ` ` 4
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` 2 ` ` 8 ` ` 2 ` ` 8
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` 1 ` `12 ` `12 ` `28 ` ` 4 ` `16
		

Crossrefs

A112869 Triangle T(g, q) = number of rotes of weight g and primal code characteristic q.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 16, 13, 56, 4
Offset: 1

Views

Author

Jon Awbrey, Oct 13 2005

Keywords

Comments

T(g, q) = |{positive integers m : A062537(m) = g and A108352(m) = q}|.
This is the column that is labeled "s" in the tabulation of A112868.
Row sums = A061396.

Examples

			Table T(g, q), omitting empty cells, begins as follows:
g\q| 0 ` 1 ` 2 ` 3 ` 4 ` 5
---+-----------------------
`0 | ` ` 1 ` ` ` ` ` ` ` `
`1 | 1 ` ` ` ` ` ` ` ` ` `
`2 | ` ` ` ` 2 ` ` ` ` ` `
`3 | 2 ` ` ` 4 ` ` ` ` ` `
`4 | 4 ` ` `16 ` ` ` ` ` `
`5 |13 ` ` `56 ` 4 ` ` ` `
		

Crossrefs

A112871 Triangle T(h, q) = number of rotes of height h and quench q.

Original entry on oeis.org

1, 1, 5, 2
Offset: 1

Views

Author

Jon Awbrey, Oct 14 2005

Keywords

Comments

T(h, q) = |{positive integers m : A109301(m) = h and A108352(m) = q}|.
This is the column that is labeled "s" in the tabulation of A112870.
q(m) = quench(m) = A108352(m) = primal code characteristic of m.

Examples

			Table T(h, q), omitting empty cells, begins as follows:
h\q| 0 ` 1 ` 2
---+----------
`0 | ` ` 1 ` `
`1 | 1 ` ` ` `
`2 | 5 ` ` ` 2
Row sums = A109300.
		

Crossrefs

Extensions

Too short to be interesting - hope more terms can be supplied soon! - N. J. A. Sloane
Previous Showing 11-20 of 38 results. Next