A077381 Number of squarefree numbers between successive squares (exclusive).
2, 3, 5, 5, 7, 8, 8, 11, 11, 14, 14, 14, 17, 19, 18, 20, 22, 20, 24, 26, 28, 26, 28, 30, 31, 32, 33, 36, 34, 37, 40, 36, 43, 42, 44, 46, 47, 46, 49, 48, 48, 51, 50, 56, 55, 57, 58, 60, 63, 59, 63, 63, 63, 69, 70, 67, 71, 71, 73, 71, 74, 78, 76, 78, 81, 79, 84, 83, 87, 85, 84, 87
Offset: 1
Keywords
Examples
a(1) = 2 because there are 2 squarefree integers between 1^2 and 2^2: 2 and 3. a(3) = 5 = number of squarefree numbers between 3^2 and 4^2: 10, 11, 13, 14 and 15.
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..10000
- Gabriel Mincu and Laurenţiu Panaitopol, On some properties of squarefree and squareful numbers, Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, Nouvelle Série, Vol. 49 (97), No. 1 (2006), pp. 63-68; alternative link.
Programs
-
Maple
a:= n-> nops(select(numtheory[issqrfree], [$n^2+1..(n+1)^2-1])): seq(a(n), n=1..80); # Alois P. Heinz, Jul 16 2019
-
Mathematica
Table[Count[Range[n^2 + 1, (n + 1)^2 - 1], _?(SquareFreeQ[#] &)], {n, 1, 80}] (* Harvey P. Dale, Jan 25 2014 *)
-
PARI
a(n)=s=0;for(i=n^2+1,(n+1)^2,if(issquarefree(i),s=s+1));return(s); \\ corrected by Hugo Pfoertner, Jul 16 2019
Formula
From Amiram Eldar, Feb 16 2021: (Start)
a(n) > n for all n (Mincu and Panaitopol, 2006).
a(n) ~ (12/Pi^2) * n. (End)
Extensions
More terms from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 23 2004
Name clarified by Hugo Pfoertner, Jul 16 2019
Comments