cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A378082 Terms appearing only once in A377783 = least nonsquarefree number > prime(n).

Original entry on oeis.org

12, 16, 18, 20, 24, 40, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 108, 112, 116, 128, 132, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 294, 308, 312, 315, 320, 332, 338, 348
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Nonsquarefree numbers k such that if p < q are the two greatest primes < k, there is at least one nonsquarefree number between p and q but all numbers between q and k are squarefree. - Robert Israel, Nov 20 2024

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
   75: {2,3,3}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
   98: {1,4,4}
  108: {1,1,2,2,2}
  112: {1,1,1,1,4}
  116: {1,1,10}
  128: {1,1,1,1,1,1,1}
  132: {1,1,2,5}
		

Crossrefs

This is a transformation of A377783 (union A378040, differences A377784).
Note also A377783 restricts A120327 (differences A378039) to the primes.
Terms appearing twice are A378083.
Terms not appearing at all are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.
A071403(n) = A013928(prime(n)) counts squarefree numbers < prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf. A112926 (diffs A378037), opposite A112925 (diffs A378038).
Cf. A378032 (diffs A378034), restriction of A378033 (diffs A378036).

Programs

  • Maple
    q:= 3: R:= NULL: flag:= false: count:= 0:
    while count < 100 do
      p:= q; q:= nextprime(q);
      for k from p+1 to q-1 do
        found:= false;
        if not numtheory:-issqrfree(k) then
          if flag then
              count:= count+1; R:= R,k
          fi;
          found:= true; break
        fi;
       od;
       flag:= found;
    od:
    R; # Robert Israel, Nov 20 2024
  • Mathematica
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}];
    Select[Most[Union[y]],Count[y,#]==1&]

A373410 Minimum of the n-th maximal antirun of nonsquarefree numbers differing by more than one.

Original entry on oeis.org

4, 9, 25, 28, 45, 49, 50, 64, 76, 81, 99, 100, 117, 121, 125, 126, 136, 148, 153, 169, 172, 176, 189, 208, 225, 243, 244, 245, 261, 276, 280, 289, 297, 316, 325, 333, 343, 344, 351, 352, 361, 364, 369, 376, 388, 405, 424, 425, 441, 460, 476, 477, 496, 508, 513
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

The maximum is given by A068781.
An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Consists of 4 and all nonsquarefree numbers n such that n - 1 is also nonsquarefree.

Examples

			Row-minima of:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
		

Crossrefs

Functional neighbors: A005381, A006512, A053806, A068781, A373408, A373409, A373412.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    First/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1!=#2&]

Formula

a(1) = 4; a(n>1) = A068781(n-1) + 1.

A375709 Numbers k such that A013929(k+1) = A013929(k) + 1. In other words, the k-th nonsquarefree number is 1 less than the next nonsquarefree number.

Original entry on oeis.org

2, 8, 10, 15, 17, 18, 24, 28, 30, 37, 38, 43, 45, 47, 48, 52, 56, 59, 65, 67, 69, 73, 80, 85, 92, 93, 94, 100, 106, 108, 111, 115, 122, 125, 128, 133, 134, 137, 138, 141, 143, 145, 148, 153, 158, 165, 166, 171, 178, 183, 184, 192, 196, 198, 203, 205, 207, 210
Offset: 1

Views

Author

Gus Wiseman, Sep 01 2024

Keywords

Comments

The difference of consecutive nonsquarefree numbers is at least 1 and at most 4, so there are four disjoint sequences of this type:
- A375709 (difference 1) (this)
- A375710 (difference 2)
- A375711 (difference 3)
- A375712 (difference 4)

Examples

			The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by one after the 2nd and 8th terms.
		

Crossrefs

Positions of 1's in A078147.
For prime-powers (A246655) we have A375734.
First differences are A373409.
For prime numbers we have A375926.
For squarefree instead of nonsquarefree we have A375927.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!SquareFreeQ[#]&]],1]

Formula

Complement of A375710 U A375711 U A375712.

A378083 Nonsquarefree numbers appearing exactly twice in A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

4, 8, 32, 44, 104, 140, 284, 464, 572, 620, 644, 824, 860, 1232, 1292, 1304, 1484, 1700, 1724, 1880, 2084, 2132, 2240, 2312, 2384, 2660, 2732, 2804, 3392, 3464, 3560, 3920, 3932, 4004, 4220, 4244, 4424, 4640, 4724, 5012, 5444, 5480, 5504, 5660, 6092, 6200
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Warning: do not confuse with A377783.

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
    32: {1,1,1,1,1}
    44: {1,1,5}
   104: {1,1,1,6}
   140: {1,1,3,4}
   284: {1,1,20}
   464: {1,1,1,1,10}
   572: {1,1,5,6}
   620: {1,1,3,11}
   644: {1,1,4,9}
   824: {1,1,1,27}
   860: {1,1,3,14}
  1232: {1,1,1,1,4,5}
		

Crossrefs

Subset of A377783 (union A378040, diffs A377784), restriction of A120327 (diffs A378039).
Terms appearing once are A378082.
Terms not appearing at all are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A071403(n) = A013928(prime(n)) counts squarefree numbers < prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf. A112926 (diffs A378037), opposite A112925 (diffs A378038).
Cf. A378032 (diffs A378034), restriction of A378033 (diffs A378036).

Programs

  • Mathematica
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==2&]

A373573 Least k such that the k-th maximal antirun of nonsquarefree numbers has length n. Position of first appearance of n in A373409.

Original entry on oeis.org

6, 1, 18, 8, 4, 2, 10, 52, 678
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The sorted version is A373574.
An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Is this sequence finite? Are there only 9 terms?

Examples

			The maximal antiruns of nonsquarefree numbers begin:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
The a(n)-th rows are:
    49
     4    8
   148  150  152
    64   68   72   75
    28   32   36   40   44
     9   12   16   18   20   24
    81   84   88   90   92   96   98
   477  480  484  486  488  490  492  495
  6345 6348 6350 6352 6354 6356 6358 6360 6363
		

Crossrefs

For composite runs we have A073051, firsts of A176246, sorted A373400.
For squarefree runs we have the triple (5,3,1), firsts of A120992.
For prime runs we have the triple (1,3,2), firsts of A175632.
For squarefree antiruns we have A373128, firsts of A373127, sorted A373200.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For prime antiruns we have A373401, firsts of A027833, sorted A373402.
For composite antiruns we have the triple (2,7,1), firsts of A373403.
Positions of first appearances in A373409.
The sorted version is A373574.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],!SquareFreeQ[#]&],#1+1!=#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A378087 First-differences of A067535 (least positive integer >= n that is squarefree).

Original entry on oeis.org

1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 3, 0, 0, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1, 3, 0, 0, 1, 4, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 3, 0, 0, 1, 1, 3, 0, 0, 1, 2, 0, 1, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Does this contain all nonnegative integers? The positions of first appearances begin: 4, 1, 3, 7, 47, 241, 843, 22019, 217069, ...

Crossrefs

Ones are A007674.
Zeros are A013929, complement A005117.
Positions of first appearances are A020754 (except first term) = A045882 - 1.
First-differences of A067535.
Twos are A280892.
For prime-powers we have A377780, differences of A000015.
The nonsquarefree opposite is A378036, differences of A378033.
The restriction to primes + 1 is A378037 (opposite A378038), differences of A112926.
For nonsquarefree numbers we have A378039, see A377783, A377784, A378040.
The opposite is A378085, differences of A070321.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,#>1&&!SquareFreeQ[#]&],{n,100}]]

A373414 Sum of the n-th maximal run of nonsquarefree numbers differing by one.

Original entry on oeis.org

4, 17, 12, 16, 18, 20, 49, 55, 32, 36, 40, 89, 147, 52, 54, 56, 60, 127, 68, 72, 151, 161, 84, 88, 90, 92, 96, 297, 104, 108, 112, 233, 241, 375, 128, 132, 271, 140, 144, 295, 150, 305, 156, 160, 162, 164, 337, 343, 351, 180, 184, 377, 192, 196, 198, 200, 204
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

The length of this run is given by A053797.
A run of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by one.

Examples

			Row-sums of:
   4
   8   9
  12
  16
  18
  20
  24  25
  27  28
  32
  36
  40
  44  45
  48  49  50
		

Crossrefs

The partial sums are a subset of A329472.
Functional neighbors: A053797, A053806, A054265, A373406, A373412, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1==#2&]//Most

A375738 Minimum of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

2, 3, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 29, 30, 31, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.

Examples

			The initial anti-runs are the following, whose minima are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For composite numbers we have A005381, runs A008864 (except first term).
For prime-powers we have A120430, runs A373673 (except first term).
For squarefree numbers we have A373408, runs A072284.
For nonsquarefree numbers we have A373410, runs A053806.
For non-prime-powers we have A373575, runs A373676.
For anti-runs of non-perfect-powers:
- length: A375736
- first: A375738 (this)
- last: A375739
- sum: A375737
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Min/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most

A375710 Numbers k such that A013929(k+1) - A013929(k) = 2. In other words, the k-th nonsquarefree number is 2 less than the next nonsquarefree number.

Original entry on oeis.org

5, 6, 9, 19, 20, 21, 33, 34, 36, 49, 57, 58, 62, 63, 66, 76, 77, 88, 89, 91, 96, 97, 103, 104, 113, 114, 118, 119, 130, 131, 132, 136, 142, 149, 150, 161, 162, 174, 175, 187, 188, 189, 190, 201, 202, 206, 215, 217, 218, 225, 226, 231, 232, 245, 246, 249, 253
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2024

Keywords

Comments

The difference of consecutive nonsquarefree numbers is at least 1 and at most 4, so there are four disjoint sequences of this type:
- A375709 (difference 1)
- A375710 (difference 2)
- A375711 (difference 3)
- A375712 (difference 4)

Examples

			The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by 2 after the fifth and sixth terms.
		

Crossrefs

Positions of 2's in A078147.
For prime numbers we have A029707.
For nonprime numbers we appear to have A014689.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[1000], !SquareFreeQ[#]&]],2]

Formula

Complement of A375709 U A375711 U A375712.

A375711 Numbers k such that A013929(k+1) - A013929(k) = 3. In other words, the k-th nonsquarefree number is 3 less than the next nonsquarefree number.

Original entry on oeis.org

3, 16, 23, 27, 31, 44, 46, 51, 55, 60, 68, 74, 79, 86, 95, 101, 105, 107, 112, 116, 121, 126, 129, 146, 147, 152, 159, 164, 167, 172, 177, 182, 185, 191, 195, 199, 204, 209, 220, 223, 229, 234, 237, 242, 244, 257, 262, 270, 275, 285, 286, 291, 299, 305, 312
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2024

Keywords

Comments

The difference of consecutive nonsquarefree numbers is at least 1 and at most 4, so there are four disjoint sequences of this type:
- A375709 (difference 1)
- A375710 (difference 2)
- A375711 (difference 3)
- A375712 (difference 4)

Examples

			The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by 3 after the third term.
		

Crossrefs

Positions of 3's in A078147.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[1000],!SquareFreeQ[#]&]],3]

Formula

Complement of A375709 U A375710 U A375712.
Previous Showing 31-40 of 52 results. Next