A093703
Numbers whose Roman numeral representation, reversed, is a Roman numeral.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 9, 10, 11, 19, 20, 30, 40, 50, 60, 90, 100, 110, 190, 200, 300, 400, 500, 600, 900, 1000, 1100, 1900, 2000, 3000
Offset: 1
a(1) = 1 because Roman(1) = I and Reversal(I) = I, which is Roman.
a(4) = 4 because Roman(4) = IV and Reversal(IV) = VI, which is Roman.
a(10) = 19 because Roman(19) = XIX which is a palindromic Roman numeral.
a(27) = 900 because Roman(900) = CM and Reversal(CM) = MC, which is Roman.
40 == XL -> LX == 60, therefore 40 and 60 are terms.
1999 is not in the sequence because "MIM" is not a well-formed Roman numeral for 1999, although it looks like one; see Schildberger.
-
a093703 n = a093703_list !! (n-1)
a093703_list = filter
((`elem` map a061493 [1..3999]) . a004086 . a061493) [1..]
-- Reinhard Zumkeller, Apr 14 2013
-
Select[Range[3000], RomanNumeral[FromRomanNumeral[#]] == # & [StringReverse[RomanNumeral[#]]] &] (* Paolo Xausa, Mar 03 2024 *)
A093788
The Roman numerals, with "i" replaced by "1", "v" replaced by "5", "x" replaced by 10, etc.
Original entry on oeis.org
1, 11, 111, 15, 5, 51, 511, 5111, 110, 10, 101, 1011, 10111, 1015, 105, 1051, 10511, 105111, 10110, 1010, 10101, 101011, 1010111, 101015, 10105, 101051, 1010511, 10105111, 1010110, 101010, 1010101, 10101011, 101010111, 10101015, 1010105
Offset: 1
William J. Rapaport (rapaport(AT)buffalo.edu), May 17 2004
-
{A093788(n)=A061493(n,,[1000, 1000, 900, 1001000, 500, 500, 400, 100500, 100, 100, 90, 10100, 50, 50, 40, 1050, 10, 10, 9, 110, 5, 5, 4, 15, 1, 1])} \\ M. F. Hasler, Jul 25 2016
Cross-references added and data double-checked by
M. F. Hasler, Jul 25 2016
A093796
Sequence of digit-values after concatenating the natural numbers < 4000 in Roman numeral representation.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 1, 5, 1, 1, 5, 1, 1, 1, 1, 10, 10, 10, 1, 10, 1, 1, 10, 1, 1, 1, 10, 1, 5, 10, 5, 10, 5, 1, 10, 5, 1, 1, 10, 5, 1, 1, 1, 10, 1, 10, 10, 10, 10, 10, 1, 10, 10, 1, 1, 10, 10, 1, 1, 1, 10, 10, 1, 5, 10, 10, 5, 10, 10, 5, 1, 10, 10, 5, 1
Offset: 1
I,II,III,IV,V,VI,VII,VIII,IX,X,XI,XII, ...
I,(I,I),(I,I,I),(I,V),V,(V,I),(V,I,I),(V,I,I,I),(I,X), ...
1,(1,1),(1,1,1),(1,5),5,(5,1),(5,1,1),(5,1,1,1),(1,10), ...
1,1,1,1,1,1,1,5,5,5,1,5,1,1,5,1,1,1,1,10,10,10,1,10,1,1, ...
- GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See Question 300(b), page 199.
-
import Data.List (unfoldr)
a093796 n = a093796_list !! n
a093796_list = concatMap (reverse . unfoldr r) $ map a061493 [1..3999]
where r 0 = Nothing
r x = Just ([0,1,5,10,50,100,500,1000] !! fromInteger d, x')
where (x', d) = divMod x 10
-- Reinhard Zumkeller, Apr 14 2013
-
for n from 1 to 50 do r:=convert(n, roman): for j from 1 to length(r) do printf("%d, ", convert(r[j],arabic)): od: od: # Nathaniel Johnston, May 18 2011
-
A093796full = Flatten[FromRomanNumeral[Characters[RomanNumeral[Range[3999]]]]];
A093796full[[;;100]] (* Paolo Xausa, Mar 03 2024 *)
-
def f(s, k):
return s[:2] if k==4 else (s[1]*(k>=5)+s[0]*(k%5) if k<9 else s[0]+s[2])
def r(n):
m, c, x, i = n//1000, (n%1000)//100, (n%100)//10, n%10
return "M"*m + f("CDM", c) + f("XLC", x) + f("IVX", i)
def afull():
v = {"I":1, "V":5, "X":10, "L":50, "C":100, "D":500, "M":1000}
ans = []
for i in range(1, 4000): ans.extend([v[d] for d in r(i)])
return ans
print(afull()[:80]) # Michael S. Branicky, Mar 04 2024
A105416
Numbers that are pandigital in Roman numerals using each of the symbols I, V, X, L, C, D and M exactly once.
Original entry on oeis.org
1444, 1446, 1464, 1466, 1644, 1646, 1664, 1666
Offset: 1
Robert Happelberg (roberthappelberg(AT)yahoo.com), Apr 06 2005
a(1) = 1444 because written in Roman numeral it is MCDXLIV, using each of the symbols I, V, X, L, C, D and M exactly once.
A105417
Numbers that are pandigital in Roman numerals, using each of the symbols I, V, X, L, C, D and M at least once.
Original entry on oeis.org
1444, 1446, 1447, 1448, 1464, 1466, 1467, 1468, 1474, 1476, 1477, 1478, 1484, 1486, 1487, 1488, 1644, 1646, 1647, 1648, 1664, 1666, 1667, 1668, 1674, 1676, 1677, 1678, 1684, 1686, 1687, 1688, 1744, 1746, 1747, 1748, 1764, 1766, 1767, 1768, 1774, 1776
Offset: 1
Robert Happelberg (roberthappelberg(AT)yahoo.com), Apr 06 2005
a(3) = 1447 because its Roman numeral representation, MCDXLVII, uses each of the symbols V, X, L, C, D and M once and the symbol I twice.
-
import Data.List (nub, sort)
a105417 n = a105417_list !! (n-1)
a105417_list = filter ((== "1234567") . sort . nub . show . a061493) [1..3999]
-- Reinhard Zumkeller, Apr 14 2013
-
with(StringTools): for n from 1 to 3999 do r:=convert(n,roman): if Search("I",r) > 0 and Search("V",r) > 0 and Search("X",r) > 0 and Search("L",r) > 0 and Search("C",r) > 0 and Search("D",r) > 0 and Search("M",r) > 0 then printf("%d, ", n): fi: od: # Nathaniel Johnston, May 18 2011
A105417 := select(n->nops(convert(convert(n,roman),set))=7, `$`(3888)) # M. F. Hasler, Jul 10 2018
-
Select[Range[900,1776],ContainsAll[Characters[RomanNumeral[#]],{"M","C","D","X","L","I","V"}]&] (* James C. McMahon, Jan 24 2024 *)
-
A105417=vector(192,i,fromdigits(apply(d->d-!d,digits(i+63,4)))+555) \\ M. F. Hasler, Jul 10 2018
A082763
Roman numeral contains an asymmetric symbol (L).
Original entry on oeis.org
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152
Offset: 1
40 = XL, 89 = LXXXIX, 140 = CXL.
Cf.
A006968 (Roman numerals main entry),
A078715 (Palindromic Roman numerals).
-
a082763 n = a082763_list !! (n-1)
a082763_list = filter (containsL . a061493) [1..3999] where
containsL x = d == 4 || x > 0 && containsL x' where
(x',d) = divMod x 10
-- Reinhard Zumkeller, Apr 14 2013
-
with(StringTools): for n from 1 to 152 do if(Search("L", convert(n, roman)) > 0)then printf("%d, ", n): fi: od: # Nathaniel Johnston, May 18 2011
-
Select[Range[200],StringCases[RomanNumeral[#],"L"]!={}&] (* Harvey P. Dale, Jun 10 2023 *)
-
/* "%" use below is actually identical to lift(Mod(n-1,50)) */ /* (n-1)50 could be used for integer division below */ /* instead of floor, but the OEIS sometimes loses */ /* characters depending upon where on a submitted line they are. */ a(n)=floor((n-1)/50)*100+40+(n-1)%50 for(n=1,125,print1(a(n),","))
A093785
Numbers that are divisible by every digit in their Roman numeral representation.
Original entry on oeis.org
1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500, 1000, 2000, 3000
Offset: 1
I, II, III, V, X, XX, XXX, L, C, CC, CCC, D, M, MM, MMM.
-
a093785 n = a093785_list !! (n-1)
a093785_list = filter p [1..3999] where
p v = q $ a061493 v where
q w = w == 0 || v `mod` ([0,1,5,10,50,100,500,1000] !! d') == 0 && q w'
where (w',d) = divMod w 10; d' = fromInteger d
-- Reinhard Zumkeller, Apr 14 2013
A120433
Numbers whose Roman numeral representation uses the subtractive notation.
Original entry on oeis.org
4, 9, 14, 19, 24, 29, 34, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 59, 64, 69, 74, 79, 84, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 104, 109, 114, 119, 124, 129, 134, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 154, 159, 164, 169, 174
Offset: 1
In Roman numerals, 14 is XIV, that is, X + (V - I) = 10 + (5 - 1) = 14, so 14 is in the sequence.
In Roman numerals, 15 is XV, meaning X + V = 10 + 5 = 15, which does not use subtractive notation, so 15 is not in the sequence.
Cf.
A016897, 5n + 4 (first diverges after 39, as that sequence does not include 40, 41, 42, 43).
-
with(StringTools): for n from 1 to 300 do r:=convert(n,roman): if(Search("IV",r)>0 or Search("IX",r)>0 or Search("XL",r)>0 or Search("XC",r)>0 or Search("CD",r)>0 or Search("CM",r)>0)then printf("%d, ", n): fi: od: # Nathaniel Johnston, May 18 2011
-
Select[Range[3999], StringContainsQ[RomanNumeral[#], {"IV", "IX", "XL", "XC", "CD", "CM"}] &] (* Michael De Vlieger, Aug 20 2024 *)
-
def ok(n): return {"4", "9"} & set(str(n))
afull = [k for k in range(4000) if ok(k)] # Michael S. Branicky, Aug 20 2024
A285511
Value of the n-th Roman number interpreted as Latin alphabetic number.
Original entry on oeis.org
9, 243, 6327, 256, 22, 581, 15115, 392999, 258, 24, 633, 16467, 428151, 16480, 646, 16805, 436939, 11360423, 16482, 648, 16857, 438291, 11395575, 438304, 16870, 438629, 11404363, 296513447, 438306, 16872, 438681, 11405715, 296548599, 11405728, 438694, 11406053, 296557387, 7710492071, 11405730, 636
Offset: 1
The number n = 1 is written "I" in the Roman number system. "I" being the ninth letter in the alphabet is also the ninth number in the alphabetic number system. Therefore a(1) = 9.
The number n = 2 is written "II" in the Roman number system. "II" is also the 243rd number in the alphabetic number system, because "I" is the ninth letter in the 26-letter alphabet and 9*26^1+9*26^0 = 243. Therefore a(2) = 243.
The number n = 3 is written "III" in the Roman number system. "III" is also the 6327th number in the alphabetic number system because "I" is the ninth letter in the 26-letter alphabet and 9*26^2+9*26^1+9*26^0 = 6327. Therefore a(3) = 6327.
The number n = 4 is written "IV" in the Roman number system. "IV" is also the 256th number in the alphabetic number system because "I" is the ninth letter in the 26-letter alphabet and "V" is the 22nd letter, therefore a(4) = 9*26^1 + 22 = 256.
The number n = 600 is written "DC" in the Roman number system. "DC" is also the 107th number in the alphabetic number system, because "D" and "C" are the fourth and third letters in the 26-letter alphabet and 4*26^1+3*26^0 = 107. Therefore a(600) = 107.
Comments