cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A122031 a(n) = a(n - 1) + (n - 1)*a(n - 2).

Original entry on oeis.org

1, 2, 3, 7, 16, 44, 124, 388, 1256, 4360, 15664, 59264, 231568, 942736, 3953120, 17151424, 76448224, 350871008, 1650490816, 7966168960, 39325494464, 198648873664, 1024484257408, 5394759478016, 28957897398400
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Comments

Equals the eigensequence of an infinite lower triangular matrix with (1, 1, 1, ...) in the main diagaonal, (1, 1, 2, 3, 4, 5, ...) in the subdiagonal and the rest zeros. - Gary W. Adamson, Apr 13 2009

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n - 1] + (n - 1)*a[n - 2] Table[a[n], {n, 0, 30}]
    Table[n!*SeriesCoefficient[1/2*Exp[x+x^2/2]*(2-Sqrt[2*E*Pi]*Erf[1/Sqrt[2]]+Sqrt[2*E*Pi]*Erf[(1+x)/Sqrt[2]]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec after Paul Abbott, Dec 27 2012 *)
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==a[n-1]+(n-1)a[n-2]},a,{n,30}] (* Harvey P. Dale, Feb 21 2015 *)

Formula

E.g.f.: (1/2)*exp(x + x^2/2)*(2 - sqrt(2*exp(1)*Pi)*erf(1/sqrt(2)) + sqrt(2*exp(1)*Pi)*erf((1+x)/sqrt(2))). - Paul Abbott (paul(AT) physics.uwa.edu.au)
a(n) ~ (1/sqrt(2) + sqrt(Pi)/2*exp(1/2) * (1 - erf(1/sqrt(2)))) * n^(n/2)*exp(sqrt(n) - n/2 - 1/4) * (1+7/(24*sqrt(n))). - Vaclav Kotesovec, Dec 27 2012

Extensions

Edited by N. J. A. Sloane, Sep 17 2006
Offset corrected by Vaclav Kotesovec, Dec 27 2012

A139158 Triangle a(n,k) of the expansion coefficients of the Hermite polynomial 2*H(n/2,x) if n even, of H((n-1)/2,x)+H((n+1)/2,x) if n odd.

Original entry on oeis.org

2, 1, 2, 0, 4, -2, 2, 4, -4, 0, 8, -2, -12, 4, 8, 0, -24, 0, 16, 12, -12, -48, 8, 16, 24, 0, -96, 0, 32, 12, 120, -48, -160, 16, 32, 0, 240, 0, -320, 0, 64, -120, 120, 720, -160, -480, 32, 64, -240, 0, 1440, 0, -960, 0, 128, -120, -1680, 720, 3360, -480, -1344, 64, 128, 0, -3360, 0, 6720, 0, -2688
Offset: 0

Views

Author

Roger L. Bagula, Jun 05 2008

Keywords

Comments

Coefficients are ordered along increasing exponents [x^k], k=0,...,floor((n+1)/2).
Row sums are 2, 3, 4, 4, 4, -2, -8, -24, -40, -28, -16,..

Examples

			{2}, = 2
{1, 2}, = 1+2x
{0, 4}, = 4x^2
{-2, 2, 4}, = -2+2x+4x^2
{-4, 0, 8}, = -4+8x^2
{-2, -12, 4, 8},
{0, -24, 0, 16},
{12, -12, -48, 8, 16},
{24, 0, -96, 0, 32},
{12, 120, -48, -160, 16, 32},
{0, 240, 0, -320, 0, 64}.
		

Crossrefs

Cf. A060821.

Programs

  • Maple
    A060821 := proc(n,k) orthopoly[H](n,x) ; coeftayl(%,x=0,k) ; end:
    A139158 := proc(n,k) if type(n,'even') then 2*A060821(n/2,k) ; else A060821((n+1)/2-1,k)+A060821((n+1)/2,k) ; fi; end: seq( seq(A139158(n,k),k=0..(n+1)/2),n=0..15) ;
  • Mathematica
    Clear[p, x] p[x, 0] = 2*HermiteH[0, x]; p[x, 1] = HermiteH[0, x] + HermiteH[1, x]; p[x, 2] = 2*HermiteH[1, x]; p[x_, m_] := p[x, m] = If[Mod[m, 2] == 0, 2*HermiteH[Floor[m/2], x], HermiteH[ Floor[m/2], x] + HermiteH[Floor[m/ 2 + 1], x]];
    Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}];
    Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]

Formula

a(2*n,k) = 2* A060821(n,k). a(2*n-1,k) = A060821(n-1,k)+A060821(n,k) .
sum_{k=0..n} a(2*n,k) = 2*A062267(n).
sum_{k=0..n} a(2*n-1,k) = A062267(n) + A062267(n-1).

Extensions

Edited by the Associate Editors of the OEIS, Aug 28 2009

A277379 E.g.f.: exp(x/(1-x^2))/sqrt(1-x^2).

Original entry on oeis.org

1, 1, 2, 10, 40, 296, 1936, 17872, 164480, 1820800, 21442816, 279255296, 3967316992, 59837670400, 988024924160, 17009993230336, 318566665977856, 6177885274406912, 129053377688043520, 2786107670662021120, 64136976817284448256, 1525720008470138454016
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 11 2016

Keywords

Comments

Is this the same as A227545 (at least for n>=1)?

Crossrefs

Programs

  • Mathematica
    Table[Abs[HermiteH[n, (1 + I)/2]]^2/2^n, {n, 0, 20}]

Formula

a(n) = |H_n((1+i)/2)|^2 / 2^n = H_n((1+i)/2) * H_n((1-i)/2) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1).
D-finite with recurrence: (n+1)*(n+2)*(a(n) - n^2*a(n-1)) + (2*n^2+7*n+6)*a(n+1) + a(n+2) = a(n+3).
a(n) ~ n^n * exp(sqrt(2*n)-n) / 2. - Vaclav Kotesovec, Oct 14 2016
Previous Showing 11-13 of 13 results.