cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A124090 C(n,7)-1.

Original entry on oeis.org

0, 7, 35, 119, 329, 791, 1715, 3431, 6434, 11439, 19447, 31823, 50387, 77519, 116279, 170543, 245156, 346103, 480699, 657799, 888029, 1184039, 1560779, 2035799, 2629574, 3365855, 4272047, 5379615, 6724519, 8347679, 10295471, 12620255
Offset: 7

Views

Author

Zerinvary Lajos, Nov 25 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq(binomial(n,7)-1,n=7..47)];
  • Mathematica
    Binomial[Range[7,50],7]-1 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,7,35,119,329,791,1715,3431},40] (* Harvey P. Dale, Aug 14 2014 *)

A165618 a(n) = binomial(n+8,8) - 1.

Original entry on oeis.org

0, 8, 44, 164, 494, 1286, 3002, 6434, 12869, 24309, 43757, 75581, 125969, 203489, 319769, 490313, 735470, 1081574, 1562274, 2220074, 3108104, 4292144, 5852924, 7888724, 10518299, 13884155, 18156203, 23535819, 30260339, 38608019, 48903491
Offset: 0

Views

Author

Enrique Pérez Herrero, Sep 22 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ -1 + Binomial[n + 8, 8], {n, 0, 30}]
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,8,44,164,494,1286,3002,6434,12869},40] (* Harvey P. Dale, Nov 18 2013 *)
  • PARI
    vector(100,n,binomial(n+7,8)-1) \\ Charles R Greathouse IV, May 27 2011

Formula

a(n) = binomial(n+8,8) - 1 = A000581(n+8) - 1.
a(n) = Sum_{r=1..n} binomial(8,r)*binomial(n,r).
a(n) = n(n+9)(n^6 + 27n^5 + 303n^4 + 1809n^3 + 6168n^2 + 11772n + 12176)/40320.

Extensions

Edited by Charles R Greathouse IV, May 27 2011

A341773 Number of partitions of 2*n into exactly n nonzero tetrahedral numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 1, 0, 3, 1, 0, 3, 1, 0, 4, 2, 0, 4, 2, 0, 4, 3, 0, 5, 4, 1, 5, 4, 1, 5, 5, 1, 6, 6, 2, 6, 6, 2, 6, 7, 3, 7, 9, 4, 8, 9, 4, 8, 10, 5, 9, 12, 6, 10, 12, 7, 10, 13, 8, 12, 15, 10, 13, 16, 11, 13, 17, 12
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1/(1 - x^(Binomial[k + 4, 3] - 1)), {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1 / (1 - x^(binomial(k+4,3)-1)).
Previous Showing 11-13 of 13 results.