cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A062939 Numbers k that, when expressed in base 6 and then interpreted in base 9, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 51, 54, 105, 306, 324, 630, 2646, 6711, 8998, 9003, 19847, 29513, 30127, 30132, 67662, 71267, 314751, 314928, 405972, 427602, 1009394, 1347704, 1888506, 1889568, 2321838, 2840097, 5383299, 6056364, 7143622, 8086224, 11331036, 11337408, 14382561
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Examples

			51 in base 6 is 123, which interpreted in base 9 is 102 = 2*51.
		

Crossrefs

Extensions

More terms from Naohiro Nomoto, Aug 06 2001
Offset changed to 1 and a(33)-a(39) from Georg Fischer, Mar 13 2023

A062942 Numbers k that, when expressed in base 6 and then interpreted in base 10, give a multiple of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 308, 4920, 11284, 11914, 144393, 195453, 518659, 866358, 925148, 1010765, 1172718, 1369865, 2141968, 2557924, 4287428, 4296908, 6064590, 8219190, 15347544, 16891738, 18409156, 18532263, 21880744, 23693054, 25724568, 25781448, 88115915, 93066844
Offset: 1

Views

Author

Erich Friedman, Jul 21 2001

Keywords

Comments

Zero followed by A032546. [From R. J. Mathar, Oct 02 2008]

Examples

			308 in base 6 is 1232, which interpreted in base 10 is 1232 = 4*308.
		

Crossrefs

Extensions

More terms from Naohiro Nomoto, Aug 06 2001
Offset changed to 1 and a(29)-a(34) from Georg Fischer, Mar 13 2023

A089815 a(n) = floor((n+2)^(n+2)/((n+2)^2-1)).

Original entry on oeis.org

1, 3, 17, 130, 1333, 17157, 266305, 4842756, 101010101, 2377597255, 62350352785, 1802828015430, 56984650387477, 1954883439200265, 72340172838076673, 2872362020438669320, 121815504877079063701, 5495610154611982192011, 262801002506265664160401
Offset: 0

Views

Author

Paul Barry, Nov 12 2003

Keywords

Crossrefs

Programs

  • Magma
    [Floor((n+2)^(n+2)/((n+2)^2-1)): n in [0..50]]; // G. C. Greubel, Oct 10 2017
  • Maple
    A089815:=n->floor((n+2)^(n+2)/((n+2)^2-1)): seq(A089815(n), n=0..30); # Wesley Ivan Hurt, Apr 11 2017
  • Mathematica
    Table[Floor[(n + 2)^(n + 2)/((n + 2)^2 - 1)], {n, 0, 50}] (* G. C. Greubel, Oct 10 2017 *)
  • PARI
    for(n=0,50, print1(floor((n+2)^(n+2)/((n+2)^2-1)), ", ")) \\ G. C. Greubel, Oct 10 2017
    

A089816 a(n) = floor((n+3)^(n+2)/((n+3)^2-1)).

Original entry on oeis.org

1, 4, 26, 222, 2451, 33288, 538084, 10101010, 216145205, 5195862732, 138679078110, 4070332170534, 130325562613351, 4521260802379792, 168962471790509960, 6767528048726614650, 289242639716420115369
Offset: 0

Views

Author

Paul Barry, Nov 12 2003

Keywords

Crossrefs

Programs

  • Magma
    [Floor((n+3)^(n+2)/((n+3)^2-1)): n in [0..25]]; // G. C. Greubel, Oct 11 2017
  • Mathematica
    Table[Floor[(n + 3)^(n + 2)/((n + 3)^2 - 1)], {n, 0, 50}] (* G. C. Greubel, Oct 11 2017 *)
  • PARI
    for(n=0, 25, print1(floor((n+3)^(n+2)/((n+3)^2-1)), ", ")) \\ G. C. Greubel, Oct 11 2017
    
Previous Showing 11-14 of 14 results.