cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A354943 a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * n^(n-k).

Original entry on oeis.org

1, 2, 22, 438, 12824, 496370, 23914512, 1379269094, 92667551104, 7108231236066, 612974464428800, 58702772664490262, 6181602019316333568, 709911177607125141362, 88301595129435811723264, 11825985945777638231211750, 1696696168760520436580974592, 259624546758869333450285984066
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[Sum[Binomial[n, k]^3 k! n^(n - k), {k, 0, n}], {n, 0, 17}]
    Unprotect[Power]; 0^0 = 1; Table[n!^3 SeriesCoefficient[BesselI[0, 2 Sqrt[x]] Sum[n^k x^k/k!^3, {k, 0, n}], {x, 0, n}], {n, 0, 17}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^3 * k! * n^(n-k)); \\ Michel Marcus, Jun 12 2022

Formula

a(n) = n!^3 * [x^n] BesselI(0,2*sqrt(x)) * Sum_{k>=0} n^k * x^k / k!^3.
a(n) ~ c * n^(n - 1/2) / (exp(r*n) * r^(2*n)), where r = (2 - 5*(2/(3*sqrt(69)-11))^(1/3) + ((3*sqrt(69)-11)/2)^(1/3))/3 = 0.430159709001946734... is the real root of the equation r^2 = (1-r)^3 and c = sqrt(138 + 2^(2/3)*(69*(8901 - 223*sqrt(69)))^(1/3) + 2^(2/3)*(69*(8901 + 223*sqrt(69)))^(1/3))/(2*sqrt(69*Pi)) = 0.684738330749970434111338151096549475398274404060139170789278633219363118... - Vaclav Kotesovec, Jul 01 2022, updated Mar 17 2024

A134558 Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0

Views

Author

Ross La Haye, Jan 22 2008

Keywords

Examples

			Square array begins:
    1,    1,    1,     1,     1,     1,      1, ...
    1,    2,    3,     4,     5,     6,      7, ...
    2,    5,   10,    17,    26,    37,     50, ...
    6,   16,   38,    78,   142,   236,    366, ...
   24,   65,  168,   393,   824,  1569,   2760, ...
  120,  326,  872,  2208,  5144, 10970,  21576, ...
  720, 1957, 5296, 13977, 34960, 81445, 176112, ...
		

Crossrefs

Cf. a(n, 0) = A000142(n); a(n, 1) = A000522(n); a(n, 2) = A010842(n); a(n, 3) = A053486(n); a(n, 4) = A053487(n); a(n, 5) = A080954(n); a(n, 6) = A108869(n); a(1, k) = A000027(k+1); a(2, k) = A002522(k+1); a(n, n) = A063170(n); a(n, n+1) = A001865(n+1); a(n, n+2) = A001863(n+2).
Another version: A089258.
A transposed version: A080955.
Cf. A001113.

Programs

  • Mathematica
    T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)

Formula

a(n,k) = gamma(n+1,k)*e^k = Sum_{m=0..n} m!*binomial(n,m)*k^(n-m).
a(n,k) = n*a(n-1,k) + k^n for n,k > 0.
E.g.f. (by columns) is e^(kx)/(1-x).
a(n,k) = the binomial transform by columns of a(n,k-1).
Conjecture: a(n,k) is the permanent of the n X n matrix with k+1 on the main diagonal and 1 elsewhere.

Extensions

More terms from Amiram Eldar, Jun 27 2020

A226931 Numerator of n + Sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k), k=0..n).

Original entry on oeis.org

3, 9, 53, 231, 5319, 3167, 1296273, 1604979, 64370707, 22906587, 411169704813, 610433321, 424312831956207, 2146177886409, 98731231639051, 12218411169233691, 1112291237880234922707, 2196818399875253, 2619031544578888560315813, 16827894135040576041
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2013

Keywords

Examples

			3, 9/2, 53/9, 231/32, 5319/625, 3167/324, 1296273/117649, 1604979/131072, ...
		

Crossrefs

Denominators are in A036505. Cf. A090878, A063170.

Programs

  • PARI
    a(n) = numerator(n + sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k))); \\ Michel Marcus, Jun 11 2015

A336999 a(n) = n! * Sum_{d|n} n^d / d!.

Original entry on oeis.org

1, 8, 45, 544, 3725, 89856, 858823, 25271296, 434776329, 13241728000, 285750755411, 11494661861376, 302956057862653, 12945137688641536, 446924199188379375, 20735627677666902016, 827246308572614396177, 43155924331583693389824
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[n^d/d!, {d, Divisors[n]}], {n, 1, 18}]
    Table[n! SeriesCoefficient[Sum[(Exp[n x^k] - 1), {k, 1, n}], {x, 0, n}], {n, 1, 18}]
  • PARI
    a(n) = n! * sumdiv(n, d, n^d/d!); \\ Michel Marcus, Aug 12 2020

Formula

a(n) = n! * [x^n] Sum_{k>=1} (exp(n*x^k) - 1).
Previous Showing 21-24 of 24 results.