A354943
a(n) = Sum_{k=0..n} binomial(n,k)^3 * k! * n^(n-k).
Original entry on oeis.org
1, 2, 22, 438, 12824, 496370, 23914512, 1379269094, 92667551104, 7108231236066, 612974464428800, 58702772664490262, 6181602019316333568, 709911177607125141362, 88301595129435811723264, 11825985945777638231211750, 1696696168760520436580974592, 259624546758869333450285984066
Offset: 0
-
Unprotect[Power]; 0^0 = 1; Table[Sum[Binomial[n, k]^3 k! n^(n - k), {k, 0, n}], {n, 0, 17}]
Unprotect[Power]; 0^0 = 1; Table[n!^3 SeriesCoefficient[BesselI[0, 2 Sqrt[x]] Sum[n^k x^k/k!^3, {k, 0, n}], {x, 0, n}], {n, 0, 17}]
-
a(n) = sum(k=0, n, binomial(n,k)^3 * k! * n^(n-k)); \\ Michel Marcus, Jun 12 2022
A134558
Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 5, 10, 17, 26, 37, 50, ...
6, 16, 38, 78, 142, 236, 366, ...
24, 65, 168, 393, 824, 1569, 2760, ...
120, 326, 872, 2208, 5144, 10970, 21576, ...
720, 1957, 5296, 13977, 34960, 81445, 176112, ...
Cf. a(n, 0) =
A000142(n); a(n, 1) =
A000522(n); a(n, 2) =
A010842(n); a(n, 3) =
A053486(n); a(n, 4) =
A053487(n); a(n, 5) =
A080954(n); a(n, 6) =
A108869(n); a(1, k) =
A000027(k+1); a(2, k) =
A002522(k+1); a(n, n) =
A063170(n); a(n, n+1) =
A001865(n+1); a(n, n+2) =
A001863(n+2).
-
T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)
A226931
Numerator of n + Sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k), k=0..n).
Original entry on oeis.org
3, 9, 53, 231, 5319, 3167, 1296273, 1604979, 64370707, 22906587, 411169704813, 610433321, 424312831956207, 2146177886409, 98731231639051, 12218411169233691, 1112291237880234922707, 2196818399875253, 2619031544578888560315813, 16827894135040576041
Offset: 1
3, 9/2, 53/9, 231/32, 5319/625, 3167/324, 1296273/117649, 1604979/131072, ...
-
a(n) = numerator(n + sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k))); \\ Michel Marcus, Jun 11 2015
A336999
a(n) = n! * Sum_{d|n} n^d / d!.
Original entry on oeis.org
1, 8, 45, 544, 3725, 89856, 858823, 25271296, 434776329, 13241728000, 285750755411, 11494661861376, 302956057862653, 12945137688641536, 446924199188379375, 20735627677666902016, 827246308572614396177, 43155924331583693389824
Offset: 1
-
Table[n! Sum[n^d/d!, {d, Divisors[n]}], {n, 1, 18}]
Table[n! SeriesCoefficient[Sum[(Exp[n x^k] - 1), {k, 1, n}], {x, 0, n}], {n, 1, 18}]
-
a(n) = n! * sumdiv(n, d, n^d/d!); \\ Michel Marcus, Aug 12 2020