A177864 a(n) is the smallest nontrivial quadratic residue modulo prime(n), for n >= 3.
4, 2, 3, 3, 2, 4, 2, 4, 2, 3, 2, 4, 2, 4, 3, 3, 4, 2, 2, 2, 3, 2, 2, 4, 2, 3, 3, 2, 2, 3, 2, 4, 4, 2, 3, 4, 2, 4, 3, 3, 2, 2, 4, 2, 4, 2, 3, 3, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 4, 4, 4, 2, 2, 4, 4, 2, 3, 3, 2, 2, 2, 3, 4, 2, 4, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 4, 2, 4, 3
Offset: 3
Examples
The quadratic residues modulo prime(3) = 5 are 1 and 4, so a(3) = 4.
Links
- Wikipedia, Quadratic residue
- Wikipedia, Quadratic reciprocity
Crossrefs
Programs
-
Mathematica
Flatten[Table[ Extract[Flatten[ Position[Table[JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]], {2}], {n, 3, 100}]]
-
PARI
a(n,p=prime(n))=[2,0,0,0,4,0,2,0,0,0,3,0,3,0,0,0,2,0,4,0,0,0,2][p%24] \\ Charles R Greathouse IV, Jun 14 2022
Formula
a(n) = 2 or 3 or 4 according as prime(n) == 1,7,9,15,17,23 or 11,13 or 3,5,19,21 (mod 24), respectively, for n > 2, by the quadratic reciprocity law and its supplements.
Comments