cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A125906 Riordan array (1/(1 + 5*x + x^2), x/(1 + 5*x + x^2))^(-1); inverse of Riordan array A123967.

Original entry on oeis.org

1, 5, 1, 26, 10, 1, 140, 77, 15, 1, 777, 540, 153, 20, 1, 4425, 3630, 1325, 254, 25, 1, 25755, 23900, 10509, 2620, 380, 30, 1, 152675, 155764, 79065, 23989, 4550, 531, 35, 1, 919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 04 2007

Keywords

Comments

T(0)=A053121, T(1)=A064189, T(2)=A039598, T(3)=A091965, T(4)=A052179.
Triangle read by rows: T(n,k) = number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and five types of steps H=(1,0); example: T(3,1)=77 because we have UDU, UUD, 25 HHU paths, 25 HUH paths and 25 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
7^n = (n-th row terms) dot (first n+1 terms in 1,2,3,...). Example: 7^3 = 343 = (140, 77, 15, 1) dot (1, 2, 3, 4) = (140 + 154 + 45 + 4) = 343. - Gary W. Adamson, Jun 17 2011
A subset of the "family of triangles" (Deleham comment of Sep 25 2007) is the succession of binomial transforms beginning with triangle A053121, (0,0); giving -> A064189, (1,1); -> A039598, (2,2); -> A091965, (3,3); -> A052179, (4,4); -> A125906, (5,5) ->, etc; generally the binomial transform of the triangle generated from (n,n) = that generated from ((n+1),(n+1)). - Gary W. Adamson, Aug 03 2011
Riordan array (f(x), x*f(x)) where f(x) is the o.g.f. of A182401. - Philippe Deléham, Mar 04 2013

Examples

			Triangle begins
       1;
       5,       1;
      26,      10,      1;
     140,      77,     15,      1;
     777,     540,    153,     20,     1;
    4425,    3630,   1325,    254,    25,    1;
   25755,   23900,  10509,   2620,   380,   30,   1;
  152675,  155764,  79065,  23989,  4550,  531,  35,  1;
  919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins
  5, 1;
  1, 5, 1,;
  0, 1, 5, 1;
  0, 0, 1, 5, 1;
  0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 5, 1; (End)
		

Crossrefs

Cf. A182401.

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,  T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 5, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Triangle T(5) where T(x) is defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + x*T(n-1,k) + T(n-1,k+1). Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0). Sum_{k=0..n} T(n,k) = A122898(n).
Sum_{k=0..n} T(n,k)*(k+1) = 7^n. - Philippe Deléham, Mar 26 2007
T(n,0) = A182401(n). - Philippe Deléham, Mar 04 2013
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + 5*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

A126093 Inverse binomial matrix applied to A110877.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 6, 4, 1, 6, 18, 15, 6, 1, 18, 57, 54, 28, 8, 1, 57, 186, 193, 118, 45, 10, 1, 186, 622, 690, 474, 218, 66, 12, 1, 622, 2120, 2476, 1856, 976, 362, 91, 14, 1, 2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2007

Keywords

Comments

Diagonal sums are A065601. - Philippe Deléham, Mar 05 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
     1;
     0,    1;
     1,    2,    1;
     2,    6,    4,    1;
     6,   18,   15,    6,    1;
    18,   57,   54,   28,    8,    1;
    57,  186,  193,  118,   45,   10,   1;
   186,  622,  690,  474,  218,   66,  12,   1;
   622, 2120, 2476, 1856,  976,  362,  91,  14,  1;
  2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1;
Production matrix begins
  0, 1;
  1, 2, 1;
  0, 1, 2, 1;
  0, 0, 1, 2, 1;
  0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 2, 1;
- _Philippe Deléham_, Nov 07 2011
		

Programs

  • Mathematica
    T[0, 0, x_, y_]:= 1; T[n_, 0, x_, y_]:= x*T[n-1,0,x,y] + T[n-1,1,x,y]; T[n_, k_, x_, y_]:= T[n, k, x, y]= If[k<0 || k>n, 0, T[n-1,k-1,x,y] + y*T[n-1,k,x,y] + T[n-1,k+1,x,y]]; Table[T[n,k,0,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 21 2017 *)
  • Sage
    @CachedFunction
    def T(n, k, x, y):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        elif (k==0): return x*T(n-1,0,x,y) + T(n-1,1,x,y)
        else: return T(n-1,k-1,x,y) + y*T(n-1,k,x,y) + T(n-1,k+1,x,y)
    [[T(n,k,0,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020

Formula

Triangle T(n,k), 0<=k<=n, read by rows defined by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1.
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A000957(m+n+1).
Sum_{k=0..n-1} T(n,k) = A026641(n), for n>=1. - Philippe Deléham, Mar 05 2007
Sum_{k=0..n} T(n,k)*(3k+1) = 4^n. - Philippe Deléham, Mar 22 2007

A126954 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 34, 15, 5, 1, 117, 54, 21, 6, 1, 405, 192, 81, 28, 7, 1, 1407, 678, 301, 116, 36, 8, 1, 4899, 2386, 1095, 453, 160, 45, 9, 1, 17083, 8380, 3934, 1708, 658, 214, 55, 10, 1, 59629, 29397, 14022, 6300, 2580, 927, 279, 66, 11, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
     1;
     3,    1;
    10,    4,    1;
    34,   15,    5,   1;
   117,   54,   21,   6,   1;
   405,  192,   81,  28,   7,  1;
  1407,  678,  301, 116,  36,  8, 1;
  4899, 2386, 1095, 453, 160, 45, 9, 1;
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A126932(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A059738(m+n).
Sum_{k=0..n} T(n,k)*(-k+1) = 3^n. - Philippe Deléham, Mar 26 2007

A124733 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (2,3,3,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 15, 21, 8, 1, 51, 86, 46, 11, 1, 188, 355, 235, 80, 14, 1, 731, 1488, 1140, 489, 123, 17, 1, 2950, 6335, 5397, 2730, 875, 175, 20, 1, 12235, 27352, 25256, 14462, 5530, 1420, 236, 23, 1, 51822, 119547, 117582, 74172, 32472, 10026, 2151, 306, 26, 1
Offset: 1

Views

Author

Keywords

Comments

With a different offset: Triangle T(n,k), 0<=k<=n, read by rows given by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=2*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+3*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
Equals A007318*A039599 (when written as lower triangular matrix). - Philippe Deléham, Jun 16 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
5^n = (n-th row terms) dot (first n+1 odd integers). Example: 5^4 = 625 = (51, 86, 46, 11, 1) dot (1, 3, 5, 7, 9) = (51 + 258 + 230 + 77 + 9) = 625. [Gary W. Adamson, Jun 13 2011]

Examples

			Row 3 is (5,5,1) because M[3]=[2,1,0;1,3,1;0,1,3] and M[3]^2=[5,5,1;5,11,6;1,6,10].
Triangle starts:
1;
2, 1;
5, 5, 1;
15, 21, 8, 1;
51, 86, 46, 11, 1;
188, 355, 235, 80, 14, 1;
		

Crossrefs

Cf. A110877, A091965, A002212, A007317, A026375 (row sums).

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 2 elif i=j then 3 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 2,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) + GegenbauerC(n-k-1,-n+1,3/2)): seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,  T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 2, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} (-1)^(n-k)*T(n,k) = (-1)^n. - Philippe Deléham, Feb 27 2007
Sum_{k=0..n} T(n,k)*(2*k+1) = 5^n. - Philippe Deléham, Mar 27 2007
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) + GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
From Peter Bala, Sep 06 2022: (Start)
The following assume the row and column indexing start at 0.
Riordan array (f(x), x*g(x)), where f(x) = ( 1 - sqrt((1 - 5*x)/(1 - x)) )/(2*x) = 1 + 2*x + 5*x^2 + 15*x^3 + 51*x^4 + ... is the o.g.f. of A007317 and g(x) = ( 1 - 3*x - sqrt(1 - 6*x + 5*x^2) )/(2*x^2) = 1 + 3*x + 10*x^2 + 36*x^3 + 137*x^4 + .... See A002212.
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x)*(1 + 3*x + x^2)^n expanded about the point x = 0.
T(n,k) = a(n,k) - a(n,k+1), where a(n,k) = Sum_{j = 0..n} binomial(n,j)* binomial(j,n-k-j)*3^(2*j+k-n). (End)

Extensions

Edited by N. J. A. Sloane, Dec 04 2006

A124576 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (1,4,4,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 1, 1, 2, 5, 1, 7, 23, 9, 1, 30, 108, 60, 13, 1, 138, 522, 361, 113, 17, 1, 660, 2587, 2079, 830, 182, 21, 1, 3247, 13087, 11733, 5581, 1579, 267, 25, 1, 16334, 67328, 65600, 35636, 12164, 2672, 368, 29, 1, 83662, 351246, 365364, 220308, 86964, 23220, 4173
Offset: 1

Views

Author

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows given by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+4*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Row 3 is (2,5,1) because M[3]=[1,1,0;1,4,1;0,1,4] and M[3]^2=[2,5,1;5,18,8;1,8,17].
Triangle starts:
1;
1, 1;
2, 5, 1;
7, 23, 9, 1;
30, 108, 60, 13, 1;
138, 522, 361, 113, 17, 1;
		

Crossrefs

Cf. A124575, A124574, A052179, A227081 (row sums).

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 1 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 1,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    # alternative
    A124576_row := proc(n)
        if n = 0 then
            return [1] ;
        else
            M := Matrix(n,n) ;
            M[1,1] := 1;
            for c from 2 to n do
                if c = 2 then
                    M[1,c] := 1;
                else
                    M[1,c] := 0;
                end if;
            end do:
            for r from 2 to n do
                for c from 1 to n do
                    if r = c then
                        M[r,c] := 4;
                    elif abs(r-c) = 1 then
                        M[r,c] := 1;
                    else
                        M[r,c] := 0;
                    end if;
                end do:
            end do:
            LinearAlgebra[MatrixPower](M,n-1) ;
            return [seq(%[1,r],r=1..n)] ;
        end if;
    end proc:
    for n from 0 to 10 do
        A124576_row(n) ;
        print(%) ;
    end do: # R. J. Mathar, May 20 2025
  • Mathematica
    M[n_] := SparseArray[{{1, 1} -> 1, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)

Formula

Sum_{k=0..n} T(n,k)*(4*k+1) = 6^n. - Philippe Deléham, Mar 27 2007

Extensions

Edited by N. J. A. Sloane, Dec 04 2006

A126970 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 0, 1, 1, 3, 1, 3, 11, 6, 1, 11, 42, 30, 9, 1, 42, 167, 141, 58, 12, 1, 167, 684, 648, 327, 95, 15, 1, 684, 2867, 2955, 1724, 627, 141, 18, 1, 2867, 12240, 13456, 8754, 3746, 1068, 196, 21, 1, 12240, 53043, 61362, 43464, 21060, 7146, 1677, 260, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
    1;
    0,   1;
    1,   3,   1;
    3,  11,   6,   1;
   11,  42,  30,   9,  1;
   42, 167, 141,  58, 12,  1;
  167, 684, 648, 327, 95, 15, 1; ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  0, 1
  1, 3, 1
  0, 1, 3, 1
  0, 0, 1, 3, 1
  0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,  T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 0, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A126952(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A117641(m+n).
Sum_{k=0..n} T(n,k)*(4*k+1) = 5^n. - Philippe Deléham, Mar 22 2007

A124574 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (3,4,4,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 3, 1, 10, 7, 1, 37, 39, 11, 1, 150, 204, 84, 15, 1, 654, 1050, 555, 145, 19, 1, 3012, 5409, 3415, 1154, 222, 23, 1, 14445, 28063, 20223, 8253, 2065, 315, 27, 1, 71398, 146920, 117208, 55300, 16828, 3352, 424, 31, 1, 361114, 776286, 671052, 355236, 125964, 30660, 5079, 549, 35, 1
Offset: 1

Views

Author

Keywords

Comments

Column 1 yields A064613. Row sums yield A081671.
Triangle T(n,k), 0 <= k <= n, defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1). - Philippe Deléham, Feb 27 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
6^n = ((n+1)-th row terms) dot (first n+1 odd integers). Example: 6^4 = 1296 = (150, 204, 84, 15, 1) dot (1, 3, 5, 7, 9) = (150 + 612 + 420 + 105 + 9)= 1296. - Gary W. Adamson, Jun 15 2011
From Peter Bala, Sep 06 2022: (Start)
The following assume the row and column indexing start at 0.
Riordan array (f(x), x*g(x)), where f(x) = (1 - sqrt((1 - 6*x)/(1 - 2*x)))/(2*x) is the o.g.f. of A064613 and g(x) = (1 - 4*x - sqrt(1 - 8*x + 12*x^2))/(2*x^2) is the o.g.f. of A005572.
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x)*(1 + 4*x + x^2)^n expanded about the point x = 0.
T(n,k) = a(n,k) - a(n,k+1), where a(n,k) = Sum_{j = 0..n} binomial(n,j)* binomial(j,n-k-j)*4^(2*j+k-n). (End)

Examples

			Row 4 is (37,39,11,1) because M[4]= [3,1,0,0;1,4,1,0;0,1,4,1;0,0,1,4] and M[4]^3=[37,39,11,1; 39, 87, 51, 12; 11, 51, 88, 50; 1, 12, 50, 76].
Triangle starts:
    1;
    3,    1
   10,    7,   1;
   37,   39,  11,   1
  150,  204,  84,  15,  1;
  654, 1050, 555, 145, 19, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  3, 1
  1, 4, 1
  0, 1, 4, 1
  0, 0, 1, 4, 1
  0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 0, 0, 1, 4, 1 (End)
		

Crossrefs

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 3 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 3,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,2)+GegenbauerC(n-k-1,-n+1,2 )): seq(print(seq(T(n,k),k=1..n)), n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    M[n_] := SparseArray[{{1, 1} -> 3, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 4], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} (-1)^(n-k)*T(n,k) = (-2)^n. - Philippe Deléham, Feb 27 2007
Sum_{k=0..n} T(n,k)*(2*k+1) = 6^n. - Philippe Deléham, Mar 27 2007
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,2) + GegenbauerC(n-k-1,-n+1,2)). - Peter Luschny, May 13 2016

Extensions

Edited by N. J. A. Sloane, Dec 04 2006

A126331 Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 5*T(n-1,k) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 4, 1, 17, 9, 1, 77, 63, 14, 1, 371, 406, 134, 19, 1, 1890, 2535, 1095, 230, 24, 1, 10095, 15660, 8240, 2269, 351, 29, 1, 56040, 96635, 59129, 19936, 4053, 497, 34, 1, 320795, 598344, 412216, 162862, 40698, 6572, 668, 39, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 10 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
7^n = (n-th row terms) dot (first n+1 odd integers). Example: 7^3 = 343 = (77, 63, 14, 1) dot (1, 3, 5, 7) = (77 + 189 + 70 + 7) = 243. - Gary W. Adamson, Jun 15 2011

Examples

			Triangle begins:
      1;
      4,     1;
     17,     9,    1;
     77,    63,   14,    1;
    371,   406,  134,   19,   1;
   1890,  2535, 1095,  230,  24,  1;
  10095, 15660, 8240, 2269, 351, 29, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  4, 1
  1, 5, 1
  0, 1, 5, 1
  0, 0, 1, 5, 1
  0, 0, 0, 1, 5, 1,
  0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 0, 0, 1, 5, 1 (End)
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 4, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A098409(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A104455(m+n).
Sum_{k=0..n} T(n,k)*(2*k+1) = 7^n. - Philippe Deléham, Mar 26 2007

A126791 Binomial matrix applied to A111418.

Original entry on oeis.org

1, 4, 1, 17, 7, 1, 75, 39, 10, 1, 339, 202, 70, 13, 1, 1558, 1015, 425, 110, 16, 1, 7247, 5028, 2400, 771, 159, 19, 1, 34016, 24731, 12999, 4872, 1267, 217, 22, 1, 160795, 121208, 68600, 28882, 8890, 1940, 284, 25, 1, 764388, 593019, 355890, 164136
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
From R. J. Mathar, Mar 12 2013: (Start)
The matrix inverse starts
1;
-4, 1;
11, -7, 1;
-29, 31, -10, 1;
76, -115, 60, -13, 1;
-199, 390, -285, 98, -16, 1;
521, -1254, 1185, -566, 145, -19, 1;
-1364, 3893, -4524, 2785, -985, 201, -22, 1; ... (End)

Examples

			Triangle begins:
      1;
      4,     1;
     17,     7,     1;
     75,    39,    10,    1;
    339,   202,    70,   13,    1;
   1558,  1015,   425,  110,   16,   1;
   7247,  5028,  2400,  771,  159,  19,  1;
  34016, 24731, 12999, 4872, 1267, 217, 22, 1; ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  4, 1
  1, 3, 1
  0, 1, 3, 1
  0, 0, 1, 3, 1
  0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
		

Programs

  • Maple
    A126791 := proc(n,k)
        if n=0 and k = 0 then
            1 ;
        elif k <0 or k>n then
            0;
        elif k= 0 then
            4*procname(n-1,0)+procname(n-1,1) ;
        else
            procname(n-1,k-1)+3*procname(n-1,k)+procname(n-1,k+1) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2013
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1, -n+1, 3/2)): seq(seq(T(n,k),k=1..n),n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 4, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A026378(m+n+1).
Sum_{k=0..n} T(n,k) = 5^n = A000351(n).
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + x )*(1 + 3*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

A126953 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 3, 1, 10, 3, 1, 33, 11, 3, 1, 110, 36, 12, 3, 1, 366, 122, 39, 13, 3, 1, 1220, 405, 135, 42, 14, 3, 1, 4065, 1355, 447, 149, 45, 15, 3, 1, 13550, 4512, 1504, 492, 164, 48, 16, 3, 1, 45162, 15054, 5004, 1668, 540, 180, 51, 17, 3, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array (2/(1-6x+sqrt(1-4*x^2)),x*c(x^2)) where c(x)= g.f. of the Catalan numbers A000108. - Philippe Deléham, Jun 01 2013

Examples

			Triangle begins:
     1;
     3,    1;
    10,    3,   1;
    33,   11,   3,   1;
   110,   36,  12,   3,  1;
   366,  122,  39,  13,  3,  1;
  1220,  405, 135,  42, 14,  3, 1;
  4065, 1355, 447, 149, 45, 15, 3, 1;
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 3, 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A127359(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A126931(m+n).
Sum_{k=0..n} T(n,k)*(-2*k+1) = 2^n. - Philippe Deléham, Mar 25 2007
Previous Showing 21-30 of 58 results. Next